Гамма излучение

Гамма-излучение

У этого термина существуют и другие значения, см. Гамма. Художественная иллюстрация: ядро атома испускает гамма-квант

Га́мма-излуче́ние (гамма-лучи, γ-лучи) — вид электромагнитного излучения, характеризующийся чрезвычайно малой длиной волны — менее 2⋅10−10 м — и, вследствие этого, ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Относится к ионизирующим излучениям, то есть к излучениям, взаимодействие которых с веществом способно приводить к образованию ионов разных знаков.

Гамма-излучение представляет собой поток фотонов, имеющих высокую энергию (гамма-квантов). Условно считается, что энергии квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1—100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению. С точки зрения физики, кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.

Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (см. Изомерный переход; энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях, при взаимодействиях и распадах элементарных частиц (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т. д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение, Тормозное излучение). Энергия гамма-квантов, возникающих при переходах между возбуждёнными состояниями ядер, не превышает нескольких десятков МэВ. Энергии гамма-квантов, наблюдающихся в космических лучах, могут превосходить сотни ГэВ.

Гамма-излучение было открыто французским физиком Полем Вилларом в 1900 году при исследовании излучения радия. Три компоненты ионизирующего излучения радия-226 (в смеси с его дочерними радионуклидами) были разделены по направлению отклонения частиц в магнитном поле: излучение с положительным электрическим зарядом было названо α-лучами, с отрицательным — β-лучами, а электрически нейтральное, не отклоняющееся в магнитном поле излучение получило название γ-лучей. Впервые такая терминология была использована Э. Резерфордом в начале 1903 года. В 1912 году Резерфорд и Эдвард Андраде доказали электромагнитную природу гамма-излучения.

Энциклопедичный YouTube

Открытие радиоактивности. Альфа-, бета- и гамма-излучения

«Физика — 11 класс»

Открытие радиоактивности

Открытие радиоактивности — явления, доказывающего сложный состав атомного ядра, — произошло благодаря счастливой случайности.
Рентгеновские лучи впервые были получены при столкновениях быстрых электронов со стеклянной стенкой разрядной трубки.
Одновременно наблюдалось свечение стенок трубки.
Беккерель долгое время исследовал подобное явление — свечение веществ, облученных солнечным светом.
К таким веществам относятся, в частности, соли урана, с которыми экспериментировал ученый.

И вот у него возник вопрос: не появляются ли после облучения солей урана наряду с видимым светом и рентгеновские лучи?
Беккерель завернул фотопластинку в плотную черную бумагу, положил сверху крупинки урановой соли и выставил на яркий солнечный свет.
После проявления фотопластинка почернела на тех участках, где лежала соль.
Следовательно, уран создавал какое-то излучение, которое, подобно рентгеновскому, пронизывает непрозрачные тела и действует на фотопластинку.
Беккерель думал, что это излучение возникает под влиянием солнечных лучей.

Но однажды, в феврале 1896 г., провести очередной опыт ему не удалось из-за облачной погоды.
Беккерель убрал пластинку в ящик стола, положив на нее сверху медный крест, покрытый солью урана.
Проявив на всякий случай фотопластинку два дня спустя, он обнаружил на ней почернение в форме отчетливой тени креста.
Это означало, что соли урана самопроизвольно, без каких-либо внешних влияний, создают какое-то излучение.

Вскоре Беккерель обнаружил, что излучение урановых солей ионизирует воздух, подобно рентгеновским лучам, и разряжает электроскоп.
Испробовав различные химические соединения урана, он установил очень важный факт: интенсивность излучения определяется только количеством урана в препарате и совершенно не зависит от того, в какие соединения он входит.
Следовательно, это свойство присуще не соединениям, а химическому элементу урану, его атомам.

Естественно было попытаться обнаружить, не обладают ли способностью к самопроизвольному излучению другие химические элементы, кроме урана.
В 1898 г. Мария Склодовская-Кюри во Франции и другие ученые открыли излучение тория.
В дальнейшем главные усилия в поисках новых элементов были предприняты Марией Склодовской-Кюри и ее мужем Пьером Кюри.
Систематическое исследование руд, содержащих уран и торий, позволило им выделить новый, неизвестный ранее химический элемент — полоний, названный так в честь родины Марии Склодовской-Кюри — Польши.

Наконец, был открыт еще один элемент, дающий очень интенсивное излучение.
Его назвали радием (т. е. лучистым).
Само же явление самопроизвольного излучения было названо супругами Кюри радиоактивностью.

Радий имеет относительную атомную массу, равную 226, и занимает в таблице Д. И. Менделеева клетку под номером 88.
До открытия Кюри эта клетка пустовала.
По своим химическим свойствам радий принадлежит к щелочно-земельным элементам.

Впоследствии было установлено, что все химические элементы с порядковым номером более 83 являются радиоактивными.

Радиоактивностью называется способность нестабильных ядер превращаться в другие ядра, при этом процесс превращения сопровождается испусканием различных частиц.

Альфа-, бета- и гамма-излучения

После открытия радиоактивных элементов началось исследование физической природы их излучения.
Кроме Беккереля и супругов Кюри, этим занялся Резерфорд.

Опыт Резерфорда, позволивший обнаружить сложный состав радиоактивного излучения, состоял в следующем.
Препарат радия помещали на дно узкого канала в куске свинца.
Против канала находилась фотопластинка.
На выходившее из канала излучение действовало сильное магнитное поле, линии индукции которого перпендикулярны лучу.
Вся установка размещалась в вакууме

В отсутствие магнитного поля на фотопластинке после проявления обнаруживалось одно темное пятно точно напротив канала.
В магнитном поле пучок распадался на три пучка.
Две составляющие первичного потока отклонялись в противоположные стороны.
Это указывало на наличие у этих излучений электрических зарядов противоположных знаков.
При этом отрицательный компонент излучения отклонялся магнитным полем гораздо сильнее, чем положительный.
Третья составляющая совсем не отклонялась магнитным полем.
Положительно заряженный компонент получил название альфа-лучей, отрицательно заряженный — бета-лучей и нейтральный — гамма-лучей (α-лучи, β-лучи, γ-лучи).

Эти три вида излучения очень сильно различаются по проникающей способности, т. е. по тому, насколько интенсивно они поглощаются различными веществами.
Наименьшей проникающей способностью обладают а-лучи.
Слой бумаги толщиной около 0,1 мм для них уже непрозрачен.
Если прикрыть отверстие в свинцовой пластинке листочком бумаги, то на фотопластинке не обнаружится пятна, соответствующего а-излучению.

Гораздо меньше поглощаются при прохождении через вещество β-лучи.
Алюминиевая пластинка полностью их задерживает только при толщине в несколько миллиметров.
Наибольшей проникающей способностью обладают γ-лучи.

Интенсивность поглощения γ-лучей усиливается с увеличением атомного номера вещества-поглотителя.
Но и слой свинца толщиной в 1 см не является для них непреодолимой преградой.
При прохождении у-лучей через такой слой свинца их интенсивность ослабевает лишь вдвое.

Физическая природа α-, β- и γ-лучей, очевидно, различна.

Гамма-лучи

По своим свойствам γ-лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей.
Это наводило на мысль, что γ-лучи представляют собой электромагнитные волны.
Все сомнения в этом отпали после того, как была обнаружена дифракция γ-лучей на кристаллах и измерена их длина волны.
Она оказалась очень малой — от 10-8 до 10-11 см.

На шкале электромагнитных волн γлучи непосредственно следуют за рентгеновскими.
Скорость распространения у γ-лучей такая же, как у всех электромагнитных волн, — около 300 000 км/с.

Бета-лучи

С самого начала α- и β-лучи рассматривались как потоки заряженных частиц.
Проще всего было экспериментировать с β-лучами, так как они сильнее отклоняются как в магнитном, так и в электрическом поле.

Основная задача экспериментаторов состояла в определении заряда и массы частиц.
При исследовании отклонения β-частиц в электрических и магнитных полях было установлено, что они представляют собой не что иное, как электроны, движущиеся со скоростями, очень близкими к скорости света.
Существенно, что скорости β-частиц, испущенных каким-либо радиоактивным элементом, неодинаковы.
Встречаются частицы с самыми различными скоростями.
Это и приводит к расширению пучка β-частиц в магнитном поле.

Альфа-частицы

Труднее было выяснить природу α-частиц, так как они слабее отклоняются магнитным и электрическим полями.
Окончательно эту задачу удалось решить Резерфорду.
Он измерил отношение заряда частицы к ее массе по отклонению в магнитном поле.
Оно оказалось примерно в 2 раза меньше, чем у протона — ядра атома водорода.
Заряд протона равен элементарному, а его масса очень близка к атомной единице массы.
Следовательно, у α-частицы на один элементарный заряд приходится масса, равная двум атомным единицам массы.

Атомная единица массы (а. е. м.) равна 1/12 массы атома углерода; 1 а. е. м. ≈ 1,66057 • 10-27 кг.

Но заряд α-частицы и ее масса оставались, тем не менее, неизвестными.
Следовало измерить либо заряд, либо массу α-частицы.
С появлением счетчика Гейгера стало возможным проще и точнее измерить заряд.
Сквозь очень тонкое окошко α-частицы могут проникать внутрь счетчика и регистрироваться им.

Резерфорд поместил на пути α-частиц счетчик Гейгера, который измерял число частиц, испускавшихся радиоактивным препаратом за определенное время.
Затем он поставил на место счетчика металлический цилиндр, соединенный с чувствительным электрометром.
Электрометром Резерфорд измерял заряд α-частиц, испущенных источником внутрь цилиндра за такое же время (радиоактивность многих веществ почти не меняется со временем).
Зная суммарный заряд α-частиц и их число, Резерфорд определил отношение этих величин, т. е. заряд одной α-частицы.
Этот заряд оказался равным двум элементарным.

Таким образом, он установил, что у α-частицы на каждый из двух элементарных зарядов приходится две атомные единицы массы.
Следовательно, на два элементарных заряда приходится четыре атомные единицы массы.
Такой же заряд и такую же относительную атомную массу имеет ядро гелия.
Из этого следует, что α-частица — это ядро атома гелия.

Не довольствуясь достигнутым результатом, Резерфорд затем еще прямыми опытами доказал, что при радиоактивном а-распаде образуется именно гелий.
Собирая α-частицы внутри специального резервуара на протяжении нескольких дней, он с помощью спектрального анализа убедился в том, что в сосуде накапливается гелий (каждая α-частица захватывала два электрона и превращалась в атом гелия).

Итак,
при радиоактивном распаде возникают α-лучи (ядра атома гелия), β-лучи (электроны) и γ-лучи (коротковолновое электромагнитное излучение).

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Следующая страница «Радиоактивные превращения»
Назад в раздел «Физика — 11 класс, учебник Мякишев, Буховцев, Чаругин»

Физика атомного ядра. Физика, учебник для 11 класса — Класс!ная физика

Методы наблюдения и регистрации элементарных частиц — Открытие радиоактивности. Альфа-, бета- и гамма-излучения — Радиоактивные превращения — Закон радиоактивного распада. Период полураспада — Открытие нейтрона — Строение атомного ядра. Ядерные силы. Изотопы — Энергия связи атомных ядер — Ядерные реакции — Деление ядер урана — Цепные ядерные реакции — Ядерный реактор — Термоядерные реакции. Применение ядерной энергии — Получение радиоактивных изотопов и их применение — Биологическое действие радиоактивных излучений — Краткие итоги главы — Три этапа в развитии физики элементарных частиц — Открытие позитрона. Античастицы

Виды радиоактивных излучений

Навигация по статье:

  • Альфа излучение
  • Нейтронное излучение
  • Бета излучение
  • Гамма излучение
  • Рентгеновское излучение
  • Сравнительная таблица видов радиации
  • Видео о радиации и ее видах

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией < 10 КэВ (нейтронное излучение) 5
Нейтроны от 10 до 100 КэВ (нейтронное излучение) 10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) 20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) 10
Нейтроны > 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *