Импульс через силу

Второй закон Ньютона

Классическая механика

d ( m v → ) d t = F → {\displaystyle {\frac {\mathrm {d} (m{\vec {v}})}{\mathrm {d} t}}={\vec {F}}}

История…

Фундаментальные понятия

Пространство · Время · Масса· Скорость · Сила · Механическая работа · Энергия · Импульс

Учёные

Галилей · Кеплер · Ньютон · Эйлер · Лаплас · Д’Аламбер · Лагранж · Гамильтон · Коши

См. также: Портал:Физика

Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики.

Объектом (телом), о котором идёт речь во втором законе Ньютона, является материальная точка, обладающая неотъемлемым свойством — инерцией, величина которой характеризуется массой. В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами.

Второй закон Ньютона в его наиболее распространённой формулировке, справедливой для скоростей, много меньших скорости света, утверждает: в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, не зависит от её природы, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Второй закон Ньютона в классической механике

Возможные формулировки

  • В своём труде «Математические начала натуральной философии» Исаак Ньютон приводит следующую формулировку своего закона:

Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.

  • Современная формулировка:

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

Обычно этот закон записывается в виде формулы

a → = F → m , {\displaystyle {\vec {a}}={\frac {\vec {F}}{m}},}
где a → {\displaystyle {\vec {a}}} — ускорение тела, F → {\displaystyle {\vec {F}}} — сила, приложенная к телу, а m {\displaystyle \ m} — масса тела. Или в ином виде:
m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}}

  • Формулировка второго закона Ньютона с использованием понятия импульса:

В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе:

d p → d t = F → , {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}},}
где p → = m v → {\displaystyle {\vec {p}}=m{\vec {v}}} — импульс (количество движения) точки, v → {\displaystyle {\vec {v}}} — её скорость, а t {\displaystyle t} — время.

Область применения закона

Второй закон Ньютона в классической механике сформулирован применительно к движению материальной точки. Предполагается, что масса материальной точки неизменна во времени. Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки или основными уравнениями динамики материальной точки.

Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения d p → / d t = F → {\displaystyle d{\vec {p}}/dt={\vec {F}}} и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила.

В случае, когда на материальную точку действует несколько сил, каждая из них сообщает точке ускорение, определяемое вторым законом Ньютона так, как если бы других сил не было (принцип независимости действия сил). Поэтому результирующее ускорение материальной точки можно определить по второму закону Ньютона, подставив в него равнодействующую силу.

Уравнение второго закона Ньютона F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} предполагает скалярную аддитивность масс.

Помимо материальной точки, уравнение второго закона Ньютона применимо также для описания механического движения центра масс механической системы. Центр масс движется, как материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием всех внешних сил, приложенных к точкам системы (теорема о движении центра масс системы).

Второй закон Ньютона выполняется только в инерциальных системах отсчёта. Тем не менее, добавляя к силам, действующим со стороны других тел, силы инерции, для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона. В таком случае для неинерциальной системы отсчёта уравнение движения записывается в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта, равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу.

Логическая роль второго закона Ньютона

В ньютоновском изложении классической механики законы Ньютона ниоткуда не «выводятся», они имеют статус аксиом, базирующихся на совокупности экспериментальных фактов. Как и аксиомы математики, аксиомы ньютоновской динамики можно сформулировать немного по-разному.

При одном подходе второй закон Ньютона позиционируется как экспериментально проверяемое утверждение о пропорциональности ускорения вызывающей его силе и, одновременно, определение инертной массы тела через отношение величин силы и ускорения. Тогда основная идея второго закона состоит в декларации линейности соотношения «сила—ускорение», то есть что именно эти величины (а не, скажем, сила и скорость) и именно таким образом (а не квадратично и т. п.) связаны между собой.

При другом подходе можно ввести инертную массу независимо от второго закона Ньютона, через массу определённого тела, принимаемого за эталон. Тогда второй закон содержит два независимо экспериментально проверяемых утверждения: о пропорциональности ускорения силе и обратной пропорциональности массе.

Во многих практических и учебных задачах второй закон Ньютона позволяет вычислять силу. Но данный закон не является дефиницией силы (высказывание типа «по определению, сила есть произведение массы на ускорение» неуместно), иначе он превратился бы в тавтологию.

В случае отсутствия воздействия на тело со стороны других тел ( F → = 0 {\displaystyle {\vec {F}}=0} ), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй как его частный случай. Однако, это не так, поскольку именно первым законом постулируется существование инерциальных систем отсчёта, что является самостоятельным содержательным утверждением. Соответственно, первый закон Ньютона формулируется независимо от второго.

Второй закон Ньютона устанавливает связь между динамическими и кинематическими величинами. Кроме того, уравнение закона F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} может рассматриваться как уравнение связи между физическими величинами при определении единиц силы в системах СИ, СГС и других. Единица силы определяется как такая сила, которая материальной точке с массой, равной единице массы, принимаемой в качестве основной, сообщает ускорение, равное единице ускорения, определённой ранее в качестве производной единицы. (При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде m a → = k F → {\displaystyle m{\vec {a}}=k{\vec {F}}} , где k {\displaystyle k} — коэффициент пропорциональности, определяющийся выбором единиц измерения).

Сила F → {\displaystyle {\vec {F}}} во втором законе Ньютона зависит только от координат r → {\displaystyle {\vec {r}}} и скорости v → {\displaystyle {\vec {v}}} материальной точки: p → ˙ = F → ( r → , v → ) {\displaystyle {\dot {\vec {p}}}={\vec {F}}({\vec {r}},{\vec {v}})} . Основная задача физической механики сводится к нахождению функции F → ( r → , v → ) {\displaystyle {\vec {F}}({\vec {r}},{\vec {v}})} .

Формула второго закона Ньютона a → = F → / m {\displaystyle {\vec {a}}={\vec {F}}/m} выражает принцип причинности классической механики. Координаты и скорости материальной точки в момент времени t + Δ t {\displaystyle t+\Delta t} (где Δ t → 0 {\displaystyle \Delta t\to 0} ) непрерывно и однозначно определяются через их значения в момент времени t {\displaystyle t} и заданную силу F → {\displaystyle {\vec {F}}} , действующую на материальную точку. Разлагая в ряд Тейлора и ограничиваясь малыми первого порядка по t {\displaystyle t} , получаем: r → ( t + Δ t ) = r → ( t ) + v → Δ t {\displaystyle {\vec {r}}(t+\Delta t)={\vec {r}}(t)+{\vec {v}}\Delta t} , v → ( t + Δ t ) = v → ( t ) + a → Δ t {\displaystyle {\vec {v}}(t+\Delta t)={\vec {v}}(t)+{\vec {a}}\Delta t} . Форма, в которой в механике реализуется причинность, называется механистическим или лапласовским детерминизмом.

Уравнение второго закона Ньютона F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} инвариантно относительно преобразований Галилея. Это утверждение называется принципом относительности Галилея.

В классической механике закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса являются следствиями второго закона Ньютона, однородности времени, однородности и изотропности пространства, а также некоторых предположений относительно характера действующих сил.

В случае, когда сила F → {\displaystyle {\vec {F}}} постоянна, интегрирование уравнения второго закона Ньютона d v → d t = F → m {\displaystyle {\frac {d{\vec {v}}}{dt}}={\frac {\vec {F}}{m}}} приводит к равенству v 2 → − v 1 → = F → m ( t 2 − t 1 ) {\displaystyle {\vec {v_{2}}}-{\vec {v_{1}}}={\frac {\vec {F}}{m}}(t_{2}-t_{1})} . Это соотношение показывает, что под действием заданной силы F → {\displaystyle {\vec {F}}} определённое изменение скорости Δ v → = v 2 → − v 1 → {\displaystyle \Delta {\vec {v}}={\vec {v_{2}}}-{\vec {v_{1}}}} у тела с большей массой происходит за более продолжительный промежуток времени. Поэтому говорят, что все тела обладают инерцией, а массу m {\displaystyle m} называют мерой инерции тела.

Запись закона в разных системах координат

Основной источник:

Векторная запись второго закона Ньютона m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}} верна для любой инерциальной системы координат, относительно которой определяются входящие в этот закон величины (сила, масса, ускорение). Однако, разложение на компоненты (проекции) будет различным для декартовой, цилиндрической и сферической систем. Интерес также представляет разложение на нормальную и тангенциальную составляющие.

  • Декартова прямоугольная система координат

m x ¨ = F x {\displaystyle m{\ddot {x}}=F_{x}} , m y ¨ = F y {\displaystyle m{\ddot {y}}=F_{y}} , m z ¨ = F z {\displaystyle m{\ddot {z}}=F_{z}} , где F → = F x i → + F y j → + F z k → {\displaystyle {\vec {F}}=F_{x}{\vec {i}}+F_{y}{\vec {j}}+F_{z}{\vec {k}}} , а орты декартовой системы i → {\displaystyle {\vec {i}}} , j → {\displaystyle {\vec {j}}} , k → {\displaystyle {\vec {k}}} направлены по осям координат (в сторону возрастания конкретной координаты),

  • Цилиндрическая система координат

m ( ρ ¨ − ρ φ ˙ 2 ) = F ρ {\displaystyle m({\ddot {\rho }}-\rho {\dot {\varphi }}^{2})=F_{\rho }} , m ( ρ φ ¨ − 2 ρ ˙ φ ˙ ) = F φ {\displaystyle m(\rho {\ddot {\varphi }}-2{\dot {\rho }}{\dot {\varphi }})=F_{\varphi }} , m z ¨ = F z {\displaystyle m{\ddot {z}}=F_{z}} , где F → = F ρ e → ρ + F φ e → φ + F z e → z {\displaystyle {\vec {F}}=F_{\rho }{\vec {e}}_{\rho }+F_{\varphi }{\vec {e}}_{\varphi }+F_{z}{\vec {e}}_{z}} , а орты e → ρ {\displaystyle {\vec {e}}_{\rho }} , e → φ {\displaystyle {\vec {e}}_{\varphi }} , e → z {\displaystyle {\vec {e}}_{z}} цилиндрической системы берутся в точке приложения силы и направлены, соответственно, от оси z {\displaystyle z} под 900 к ней, по окружности в плоскости x y {\displaystyle xy} с центром на оси, и вдоль z {\displaystyle z} (в сторону возрастания конкретной координаты),

  • Сферическая система координат

m ( r ¨ − r φ ˙ 2 sin 2 ⁡ θ − r θ ˙ 2 ) = F r {\displaystyle m({\ddot {r}}-r{\dot {\varphi }}^{2}\sin ^{2}\theta -r{\dot {\theta }}^{2})=F_{r}} , m ( sin ⁡ θ + 2 r φ ˙ θ ˙ cos ⁡ θ ) = F φ {\displaystyle m(\sin \theta +2r{\dot {\varphi }}{\dot {\theta }}\cos \theta )=F_{\varphi }} , m ( 2 r ˙ θ ˙ + r θ ¨ − r φ ˙ 2 sin ⁡ θ cos ⁡ θ ) = F θ {\displaystyle m(2{\dot {r}}{\dot {\theta }}+r{\ddot {\theta }}-r{\dot {\varphi }}^{2}\sin \theta \cos \theta )=F_{\theta }} , где F → = F r e → r + F φ e → φ + F θ e → θ {\displaystyle {\vec {F}}=F_{r}{\vec {e}}_{r}+F_{\varphi }{\vec {e}}_{\varphi }+F_{\theta }{\vec {e}}_{\theta }} , а орты e → r {\displaystyle {\vec {e}}_{r}} , e → φ {\displaystyle {\vec {e}}_{\varphi }} , e → θ {\displaystyle {\vec {e}}_{\theta }} сферической системы берутся в точке приложения силы и направлены, соответственно, от центра O {\displaystyle O} , по «параллелям», и по «меридианам» (в сторону возрастания конкретной координаты).

  • Разложение в соприкасающейся плоскости

В соприкасающейся плоскости ускорение a → = a n → + a t → {\displaystyle {\vec {a}}={\vec {a_{n}}}+{\vec {a_{t}}}} материальной точки массой m {\displaystyle m} и действующую на неё силу F → = F n → + F t → {\displaystyle {\vec {F}}={\vec {F_{n}}}+{\vec {F_{t}}}} можно разложить на нормальную (перпендикулярную касательной к траектории в соприкасающейся плоскости) F n → = m a n → {\displaystyle {\vec {F_{n}}}=m{\vec {a_{n}}}} и тангенциальную (параллельную касательной к траектории в соприкасающейся плоскости) F t → = m a t → {\displaystyle {\vec {F_{t}}}=m{\vec {a_{t}}}} составляющие.

Абсолютная величина нормальной силы равна F n = m a n = m v 2 / R {\displaystyle F_{n}=ma_{n}=mv^{2}/R} , где R {\displaystyle R} — радиус кривизны траектории материальной точки, v {\displaystyle v} — абсолютная величина её скорости. Нормальная сила направлена к центру кривизны траектории материальной точки. В случае круговой траектории радиуса R {\displaystyle R} абсолютная величина нормальной силы F n = m ω 2 R {\displaystyle F_{n}=m\omega ^{2}R} , где ω {\displaystyle \omega } — угловая скорость обращения точки. Нормальную силу также называют центростремительной.

Тангенциальная составляющая силы равна F t = m a t = m d 2 s d t 2 {\displaystyle F_{t}=ma_{t}=m{\frac {d^{2}s}{dt^{2}}}} , где s = s ( t ) {\displaystyle s=s(t)} — дуговая координата по траектории точки. Если d 2 s d t 2 > 0 {\displaystyle {\frac {d^{2}s}{dt^{2}}}>0} , то сила F t → {\displaystyle {\vec {F_{t}}}} совпадает по направлению с вектором скорости v → {\displaystyle {\vec {v}}} и её называют движущей силой. Если d 2 s d t 2 < 0 {\displaystyle {\frac {d^{2}s}{dt^{2}}}<0} , то сила F t → {\displaystyle {\vec {F_{t}}}} противоположна по направлению вектору скорости v → {\displaystyle {\vec {v}}} и её называют тормозящей силой.

Второй закон за пределами классической механики

В релятивистской динамике

Второй закон Ньютона в виде m a → = F → {\displaystyle m{\vec {a}}={\vec {F}}} приближённо справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.

В виде d p → d t = F → {\displaystyle {\frac {d{\vec {p}}}{dt}}={\vec {F}}} второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности, однако при этом вместо прежнего выражения для импульса используется равенство p → = m v → 1 − v 2 c 2 {\displaystyle {\vec {p}}={\frac {m{\vec {v}}}{\sqrt {1-{\frac {\displaystyle v^{2}}{\displaystyle c^{2}}}}}}} , где c {\displaystyle c} — скорость света.

Существует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса P → {\displaystyle {\vec {\mathrm {P} }}} по собственному времени τ {\displaystyle \tau } материальной точки равна четырёхсиле Φ → {\displaystyle {\vec {\Phi }}} :

Φ → = d P → d τ {\displaystyle {\vec {\Phi }}={\frac {d{\vec {\mathrm {P} }}}{d\tau }}} .

В релятивистской динамике вектор трёхмерного ускорения a → {\displaystyle {\vec {a}}} уже не параллелен вектору трёхмерной силы F → {\displaystyle {\vec {F}}} .

В квантовой механике

Законы ньютоновской динамики, в том числе второй закон Ньютона, неприменимы, если длина волны де Бройля рассматриваемого объекта соизмерима с характерными размерами области, в которой изучается его движение. В этом случае необходимо пользоваться квантовомеханическими законами.

Тем не менее, второй закон Ньютона при определённых условиях актуален применительно к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равна силе, понимаемой как градиент потенциальной энергии, взятый с обратным знаком (теорема Эренфеста).

Видоизменённый второй закон Ньютона используется и при квантовомеханическом описании движения электронов в кристаллической решётке. Взаимодействие электрона с периодическим электромагнитным полем решётки при этом учитывается введением понятия эффективной массы.

В квантовой механике, для описания движения частицы в потенциальном поле, справедливо операторное уравнение, по форме в точности совпадающее с уравнением второго закона Ньютона: m d v ^ d t = − ∇ U ^ {\displaystyle m{\frac {d{\hat {v}}}{dt}}=-\nabla {\hat {U}}} . Здесь: m {\displaystyle m} — масса частицы, v ^ = p ^ m {\displaystyle {\hat {v}}={\frac {\hat {p}}{m}}} — оператор скорости, p ^ {\displaystyle {\hat {p}}} — оператор импульса, U ^ = U ( x , y , z ) {\displaystyle {\hat {U}}=U(x,y,z)} — оператор потенциальной энергии

Научно-историческое значение закона

Оценивая значение второго закона Ньютона, А. Эйнштейн писал:

Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:

Вектор ускорения × Масса = Вектор силы.

Это — фундамент всей механики и, пожалуй, всей теоретической физики.

— Эйнштейн А. Собрание научных трудов. — М.: Наука, 1967. — Т. 4. — С. 82, 92. — 599 с. — 31 700 экз.

Все законы природы для сил в зависимости от свойств тел, их состояний и движений получаются из опытов и устанавливаются всегда и только на основе решения уравнения F → = m a → {\displaystyle {\vec {F}}=m{\vec {a}}} , которое употребляется для выражения силы.

Лагранжево и гамильтоново обобщения закона

В аналитической механике существует два аксиоматических подхода. При одном подходе в качестве аксиомы принимается второй закон Ньютона и из него выводятся уравнения Лагранжа. При другом подходе в качестве аксиомы принимаются уравнения Лагранжа. Тогда второй закон Ньютона рассматривается как следствие из них .

Из уравнений Лагранжа для произвольной голономной системы, на которую действуют как потенциальные ( Q i p {\displaystyle Q_{i}^{p}} ), так и непотенциальные ( Q i n {\displaystyle Q_{i}^{n}} ) обобщённые силы, d d t ( ∂ L ∂ q ˙ i ) − ∂ L ∂ q i = Q i n {\displaystyle {\frac {d}{dt}}\left({\frac {\partial L}{\partial {\dot {q}}_{i}}}\right)-{\frac {\partial L}{\partial q_{i}}}=Q_{i}^{n}} следует, что производная по времени обобщённого импульса p i = ∂ L ∂ q ˙ i {\displaystyle p_{i}={\frac {\partial L}{\partial {\dot {q}}_{i}}}} равна суммарной обобщённой силе Q i = Q i p + Q i n = ∂ L ∂ q i + Q i n {\displaystyle Q_{i}=Q_{i}^{p}+Q_{i}^{n}={\frac {\partial L}{\partial q_{i}}}+Q_{i}^{n}} :

p ˙ i = Q i {\displaystyle {\dot {p}}_{i}=Q_{i}} .

Записанные так в декартовых координатах уравнения Лагранжа называются уравнениями движения в форме Ньютона

Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента.

В гамильтоновой динамике

p ˙ i = − ∂ H ∂ q i {\displaystyle {\dot {p}}_{i}=-{\frac {\partial H}{\partial q_{i}}}} ,

где, как и выше, p i = ∂ L ∂ q ˙ i {\displaystyle p_{i}={\frac {\partial L}{\partial {\dot {q}}_{i}}}} — обобщённый импульс, через H = ∑ i = 1 s p i q ˙ i − L {\displaystyle H=\sum _{i=1}^{s}p_{i}{\dot {q}}_{i}-L} обозначена функция Гамильтона, а L = L ( q i , q ˙ i , t ) {\displaystyle L=L(q_{i},{\dot {q}}_{i},t)} — лагранжиан, то есть разность кинетической и потенциальной энергий системы.

См. также

  • Первый закон Ньютона
  • Уравнение Гейзенберга
  • Уравнение Мещерского
  • Уравнение Эренфеста
  • Теорема о движении центра масс системы
  • Принцип причинности

Примечания

  1. Г. А. Бугаенко, В. В. Маланин, В. И. Яковлев Основы классической механики. — М., Высшая школа, 1999. — ISBN 5-06-003587-5 — Тираж 3000 экз. — c. 43
  2. Кузнецов Б. Г. Основные принципы физики Ньютона // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — Тираж 5000 экз. — с. 188;
  3. Тарасов В. Н., Бояркина И. В., Коваленко М. В., Федорченко Н. П., Фисенко Н. И. Теоретическая механика. — М., ТрансЛит, 2012. — ISBN 978-5-94976-455-8. — Тираж 1000 экз. — с. 249
  4. То же, что инертность. См. Инерция // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  5. «Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m — масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. … В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции.» стр. 137 Седов Л. И., Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
  6. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
  7. Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 160. — 720 с. — ISBN 5-211-04244-1. «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».
  8. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 287. — 416 с. — ISBN 5-06-003117-9. «В классической механике масса каждой точки или частицы системы считается при движении величиной постоянной»
  9. Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С.39.
  10. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 107
  11. Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 40. — 690 с. — («Классики науки»). — 5 000 экз. — ISBN 5-02-000747-1.
  12. Сивухин Д. В. Общий курс физики. — М.: Физматлит; изд-во МФТИ, 2005. — Т. I. Механика. — С. 76. — 560 с. — ISBN 5-9221-0225-7.
  13. Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
  14. Иродов И. Е. Основные законы механики. — М.: Высшая школа, 1985. — С. 41. — 248 с.»В ньютоновской механике… m=const и dp/dt=ma».
  15. Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».
  16. Зоммерфельд А. Механика = Sommerfeld A. Mechanik. Zweite, revidierte Auflage, 1944. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 45-46. — 368 с. — ISBN 5-93972-051-X.
  17. Кильчевский Н. А. Курс теоретической механики. Том 1. — М.: Наука, 1977. 480 с.
  18. 1 2 Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — ISBN 978-5-488-01248-6. — Тираж 5 100 экз. — С. 38 — 39
  19. Орир Дж. Физика // М., Мир, 1981. — Тираж 75 000 экз. — Том 1. — с. 54
  20. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118
  21. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 289
  22. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118-119
  23. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 291
  24. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 119
  25. Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 106
  26. Хайкин С. Э. Физические основы механики. — М.: Физматгиз, 1963. — C. 104
  27. Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 30.
  28. Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 209-210.
  29. Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 54
  30. Селезнев Ю. А. Основы элементарной физики. — М., Наука, 1966. — Тираж 100 000 экз. — с. 40
  31. Г. Д. Бурдун, Б. Н. Марков Основы метрологии. — М.: Издательство стандартов, 1972. — Тираж 30 000 экз. — С. 49.
  32. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 24.
  33. Савельев И. В. Курс общей физики / 2-е изд., перераб. — М.: Наука, 1982. — Т. 1. Механика. Молекулярная физика. — С. 54. — 432 с.
  34. Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1969. — С. 22. — 304 с.
  35. Мултановский В.В. Курс теоретической физики: Классическая механика. Основы специальной теории относительности. Релятивистская механика. — М.: Просвещение, 1988. — С. 73. — 304 с. — ISBN 5-09-000625-3.
  36. «Не следует смешивать понятия силы и произведения массы на ускорение, которому она равна» (Фок В.А. Механика. Рецензия на книгу: Л. Ландау и Л. Пятигорский. Механика. (Теоретическая физика под общей редакцией проф. Л.Д. Ландау, т. I). Гостехиздат. Москва — Ленинград, 1940 // УФН. — 1946. — Т. 28, вып. 2–3. — С. 377–383.).
  37. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 71-72
  38. Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 164.
  39. Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. ISBN 5-06-003587-5 — Тираж 3 000 экз. — С. 47.
  40. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 94
  41. Сивухин Д. В. Общий курс физики. Механика. — М., Наука, 1979. — Тираж 50 000 экз. — с. 199
  42. Жирнов Н. И. Классическая механика. — М., Просвещение, 1980. — с. 34-35
  43. Р. Неванлинна Пространство, время и относительность. — М., Мир, 1966. — c. 202
  44. Тарасов В. Н., Бояркина И. В., Коваленко М. В. Теоретическая механика. — М., ТрансЛит, 2012. — ISBN 978-5-94976-455-8. — с. 254
  45. Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика. — М.: Наука, 1987. — С. 237.
  46. Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 347. — ISBN 5-06-003587-5
  47. Кычкин И. С., Сивцев В. И. Школьная физика: второй закон Ньютона // Международный журнал экспериментального образования. — 2016. № 3-2. — С. 194-197.
  48. Бутиков Е. И., Быков А. А., Кондратьев А. С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 544.
  49. Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 76
  50. Седов Л.И.Методы подобия и размерности в механике. — М.: Гостехтеориздат, 1954. — С. 21 — 28.
  51. Айзерман М.А. Классическая механика. — М.: Наука, 1980. — Тираж 17 500 экз. — С. 164-165
  52. Медведев Б. В. Начала теоретической физики. Механика, теория поля, элементы квантовой механики. — М.: Физматлит, 2007. — ISBN 978-5-9221-0770-9 — С. 38.
  53. Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 247. — ISBN 5-06-003587-5

Ссылки

Физические основы механики

Механика – часть физики, изучающая законы механического движения и причины, вызывающие это движение.

Механическое движение – изменение положения тел в пространстве относительно друг друга. Движение тел происходит в пространстве и во времени.

Механика делится на 3 части: кинематику (изучает движение тел не интересуясь причинами движения), динамику (изучает движение тел причины, вызывающие это движение) и статику (изучает законы равновесия системы тел).

Классическая механика (механика Галилея-Ньютона) – изучает движение макроскопических тел, со скоростями значительно меньшими скорости света.

Релятивистская механика – изучает движение макроскопических тел со скоростями близкими скорости света

Квантовая механика – изучает законы движения микроскопических тел

Элементы кинематики

Материальная точка – это тело, размером которого по условиям данной задачи можно пренебречь. Возможность не учитывать размеры тела при механическом движении определяется не размерами самого тела, а условиями рассматриваемого движения. Например, космический корабль при описании его движения по орбите может быть взят в качестве материальной точки, а космонавт, находящийся внутри этого корабля не может считаться материальной точкой.

Система материальных точек – макроскопическое тело, мысленно которое можно разбить на малые взаимодействующие между собой части, каждая из которых рассматривается как материальная точка.

Абсолютно твердое тело – это тело, которое не при каких условиях не деформируется, т.е. расстояние между любыми 2-мя его точками остается постоянным. Существование абсолютно твердых тел запрещено теорией относительности.

Сплошная среда – непрерывно распределенная в пространстве среда и обладающая упругими свойствами

Пространство и время — в Ньютоновской механике не зависимы друг от друга и считаются абсолютными (интерес представляет не время, а промежутки времени между двумя какими-либо событиями).

Система отсчета – одно или несколько тел, относительно которых рассматривается движение данного тела.

Кинематическое описание движения — положение точки в пространстве определяется тремя координатами – x,y,z .

Число степеней свободы – число независимых координат, определяющих положение тела в пространстве. Оно не зависит от выбора системы координат.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения равен пройденному пути.

Поступательное движение – это движение, при котором любая прямая линия, связанная с телом остается параллельной сама себе.

Вращательное движение – это такое движение тела, при котором каждая точка тела движется по окружности, центр которой лежит на одной прямой, оси вращения.

Траектория – линия, вдоль которой движется тело.

Вектор перемещения – вектор, соединяющий начальную и конечную точки траектории

Путь – длина траектории.

Скорость – векторная величина, которая показывает быстроту движения тела в пространстве.

Пусть моменту времени t1 соответствует радиус-вектор r1 движущейся точки, а близкому моменту времени t2 – радиус-вектор r2. Тогда за малый промежуток времени (delta) t точка совершит малое перемещение, равное (delta) s = (delta) r = r2 — r1. (рисунок – векторы r1, r2 выходят из нуля к точке 1, 2 на кривой; точки 1 и 2 соединены и образуют вектор deltaR; вектор средней скорости проходит через 1 и 2, а просто скорость выходит из точки по прямой).

v (среднее) = < v > = (delta) s / (delta) t = (delta) r / (delta) t . Вектор средней скорости направлен вдоль вектора перемещения.

Мгновенная скорость — скорость в любой момент времени. lim (при delta t  0) delta r / delta t = r ‘ ( t ). Вектор мгновенной скорости направлен по касательной траектории данной точки.

Модуль полной скорости равен:

| v | = (корень) v (ст.2) по х + v (ст.2) по y + v (ст.2) по z

Ускорение показывает быстрота изменения скорости с течением времени a ( среднее ) = delta v / delta t.

Мгновенное ускорение – a = lim (delta t  0) delta v / delta t = dv / dt = v ‘ (t). Направление вектора ускорения составляет некоторый угол с вектором скорости. Угол АЛЬФА между векторами скорости и ускорения может изменяться в пределах 0 <= АЛЬФА <= ПИ. Углы АЛЬФА=0 и АЛЬФА=ПИ соответствуют прямолинейному движению. При 0 <= АЛЬФА <= ПИ/2 модуль скорости возрастает, при ПИ/2 < АЛЬФА <= ПИ модуль скорости убывает. При АЛЬФА = ПИ/2 модуль скорости не изменяется. Вектор ускорения АЛЬФА при криволинейном движении тела обычно представляют в виде суммы двух составляющих, направленных следующим образом: одна по касательной к траектории – это тангенсальное ускорение, вторая по нормали к траектории к центру ее кривизны – нормальное ускорение.

a (нормальное) = v (ст.2) / R – также называется центростремительным ускорением

a (тангенсальное) = dv / dt – равно первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

| a | = (корень) a тангенсальное (ст.2) + a нормальное ст.2.

Движение точки по окружности — при равномерном движении материальной точки по окружности радиус-вектор r точки описывает за время deltaT равные углы deltaФИ.

Угловая скорость – векторная величина, равная первой производной угла поворота тела по времени

ОМЕГАмаленькое =deltaФИ / deltaT2=2ПИ / T

Частота вращения v = 1 / T, получим ОМЕГАмал = 2ПИv.

v = r dФИ / dt = r ОМЕГАмал.

Угловое ускорение – векторная величина, равная первой производной угловой скорости по времени

Е = dw / dt.

В случае равноускоренного движения – ФИ = ФИ нулевое + w нулевое * t + E * t (ст.2) / 2

Произвольное криволинейное движение:

a = a тангенсальное = dv / dt = v ‘ ( t )

a нормальное = v / r * lim (при delta t стремящ к 0) delta s / delta t = v (ст.2) / r

Причем r в выражении – это не радиус окружности, а радиус кривизны траектории в этой точке.

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени: омега=lim(при дельта t стрем к 0)(дельта фи/дельта t)= dфи/dt

Угловым ускорением называется век­торная величина, равная первой производ­ной угловой скорости по времени: E(эпсиолонт)=dфи/dt

Динамика поступательного движения

Динамика – изучает движение тел и причины, вызывающие это движение

Масса – мера количества вещества. В Ньютоновской механике масса остается постоянной F=ma, F=G * m1 * m2 * / R*R

Импульс тела – количество движения. P = m v (вектор) – справедливо для материальной точки. Если тело имеет конечный размер, то импульс этого тела можно найти как векторную сумму импульсов материальных точек, на которое можно разбить это тело.

Сила – мера взаимодействия тел друг с другом.

4 вида взаимодействий: Гравитационное (взаимодействие притяжения 2-х тел, обладающих массой), Слабые взаимодействия (ответственно за некоторые виды распада элементарных частиц, в частности за бета-распад), Электромагнитные взаимодействия (кулоновская и лоренцева силы) Сильное (взаимодействие – обеспечивает связь нуклонов в ядре. Закон всемирного тяготения)

F=G m1 m2 / R * R; Fk = (1 / 4ПИ * Rнулевое) * (E1 E2 / R * R);

Fл = kq

1 закон Ньютона: Если на тело не действуют никакие силы или равнодействующая всех сил равна нулю, то тело находится в состоянии покоя или равномерного прямолинейного движения. Согласно этому закону всякое тело, не подверженное внешнему воздействию находится в покое, либо движется равномерно и прямолинейно. Первый закон выполняется только в инерциальных системах отсчета.

Инерциальная система отсчета – всякая система отсчета, которая движется равномерно и прямолинейно

В инерциальных системах отсчета ускорение тела может быть вызвано только его взаимодействием с другими телами.

2 закон Ньютона: F = ma (F,a-векторы); a = F / m; ma=F1+F2+…+Fn; a=dv/dt; F=m dv / dt = d(wv) / dt = dP / dt; ; В таком виде 2ой закон применяется для описания движения тела с переменной массой.

Fх= dPx / dt= m dVx / dt= m d2 X / d t*t; Fy= m d2 Y / d t*t; Fz= m d2 Z / t*t

3 закон Ньютона: 2 тела действуют друг на друга с силами, направленными вдоль одной прямой. Эти силы равны по величине и противоположны по направлению. 3-ий закон позволяет перейти от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействия этих материальных точек сводятся к парным взаимодействиям.

Закон сохранения импульса

Замкнутой системой материальных точек называется система материальных точек, рассматриваемое как единое целое.

Внутренние силы – силы, действующие между материальными точками, входящими в замкнутую систему. Согласно 3му закону Ньютона геометрическая сумма внутренних сил равна нулю.

Внешние силы – силы с которыми на материальные точки замкнутой системы действуют внешние тела.

(F’ – внутр., F – внеш.) Пусть система состоит из n материальных точек:

d (m1 v1) / dt = F1’ + F1; ….; d (mn vn) / dt = Fn’ + Fn.

Сумма всех внутренних сил F’ = 0

F, P – векторные величины

(d / dt) * (m1 v1 + … + mn vn) = F1 + … +Fn

dP / dt = F , где F – равнодействующая всех внешних сил, приложенных к замкнутой системе материальн ых точек. F = 0  dP / dt = 0  P = const

Закон сохранения импульса – если равнодействующая всех сил, приложенных к замкнутой системе материальных точек равна нулю, то суммарный импульс в замкнутой системе остается постоянным.

Закон сохранения импульса является одним из фундаментальных законов физики. Он справедлив не только в классической механике, но и в квантовой. Закон сохранения импульса является следствием определенного свойства симметрии пространства – его однородность. При параллельном переносе в пространство замкнутой системы как целого, ее физические свойства и законы движения не изменяются. Импульс системы материальных точек может быть выражен через импульс центромасс этой системы.

(рисунок – ось ОХ, точки 0, x1, x0, x2; от x1 и x2 вниз идут вектора – m1, m2 — масса; расстояние от x1 до x0 = Xc – X1; от x0 до x2 = X2 – Xc)

m1 g (Xc – X1) = m2 g (X2 – Xc); m1 Xc – m1 X1 = m2 X2 – m2 Xc;

(m1 + m2) Xc = m1 X1 + m2 X2; Xc = (m1 X1 + m2 X2) / m; m= m1 + m2;

Xc= (сумма Mi Xi) / m ; r центромасс = (сумма m * r) / m ;

v центромасс = dr / dt = (d / dt)*( / m) = (сумма m * dv / dt) / m =

(сумма m*v) / m = P / m ; P = m * v центромасс ; Видно, что сумма импульсов замкнутой системы материальн ых точек равен импульсу центромасс этой системы – dP / dt = F1 +…+Fm ;

m * (dv центромасс / dt) = F1+…+Fm

dP / dt = F ; dP = F * dt. Произведение силы на время ее действия называется импульсом силы.

Реактивное движение Уравнение Мещерского.

(рисунок – летящая ракета, подписи – t+dt ; m –dm ; v+dv ; над хвостом подпись – dm (u+v)).

dP = (m – dm)(v dv) + (u + v)dm – mv = mv +vdm + mdv – dm dv + udm + vdm – mv = mdv + udm.

dP = mdv + udm ; Разделим обе части на dt: dP / dt = mdv / dt + udm / dt ; ma = F – udm / dt ; Fp = udm / dt ; Реактивная сила: Fp = udm / dt

Уравнение Мещерского – .

Если внешние силы на систему не действуют, то F=0 ; ma = — udm / dt ;

mdv / dt = — udm / dt; mdv = — udm; dv = — udm / m ;

v = — (интеграл от m 0 до m 0 – m) udm / m = — u (интеграл) dm / m =

= u*ln (m 0 /m 0 — m).

Уравнение Цеалковского

v – конечная скорость, u – скорость истока газа, m – масса ракеты.

Закон сохранения энергии

Работа и кинетическая энергия. Мощность.

В качестве единой количественной меры различных форм движения материи и соответствующих им взаимодействий в физике вводится скалярная величина, называемая энергией.

Движение – неотъемлемое свойство материи, поэтому любое тело, любая система тел и полей обладает энергией. Энергия системы количественно характеризует систему в отношении возможных в ней превращений движений. Изменение механического движения тела и следовательно его механической энергии возможно за счет действия на это тело других тел, т.е. сил.

Элементарной работой – называется скалярная величина dA, равная проекции вектора F на вектор dr

dA = F * dr = F dr cosАЛЬФА ; |dr| = ds ; Работа равна нулю в том случае, если: 1. тело неподвижно dr = 0  dA= 0. 2. АЛЬФА=+ — ПИ/2, dA= 0.

dA>0, если АЛЬФА – острый угол и dA< 0, если АЛЬФА – тупой угол.

Вектор F (Fx, Fy, Fz) ; вектор dr (x, y, z) ; dA= F*dr = Fx*dx+Fy*dy+Fz*dz

A = (интеграл от 1 до 2) Fdr – работа силы по перемещению тела из 1 в 2.

Другой вариант записи – A = (интеграл от 1 до 2) Ft ds.

Кинетическая энергия (энергия механического движения) – происходит под действием силы F и равна работе, совершенной этой силой. Изменение кинетической энергии происходит за счет работы внешних сил.

dWk = dA = Fdr ; dr = vdt ; dWk = Fdr = F v dt = vdP

F = dP / dt = 1/m * vdP = d(P / 2m) ; dWk = d(P / 2m) ;

Wk = P / 2m = mv(ст.2) / 2

Связь между кинетическими энергиями в различных системах отсчета.

(рисунок – точка, 2 системы координат k и k’, проведены 2 радиус-вектора от начала отсчета – r и r ’) r итое = r нулевое + r итое ‘ ;

v итое = dv / dt = (dr нулевое / dt) + (dr итое штрих / dt) = v нулевой + v итое’

v итое = v нулевое + v итое’ ; v итое в кв. = v нулевое в кв. +2 v нулевое v итое’ + v итое’ в кв. Wk = сумма mi vi в кв. / 2 = v нулевое в кв. * сумма + 2 v нулевое * сумма + 1/2 *сумма – кин. энергия.

Если выбрать начальную систему отсчета k’ в центре масс, то vc’=0 и среднее слагаемое в кинетической энергии равно 0.

Теорема Кёнита – Wk = Wk’ + mvo2/2

Кинетическая энергия механической системы равна сумме кинетических энергий этой системы, ее движение относительно центромасс и кинетической энергии, которая имела бы рассматриваемая система, двигаясь поступательно со скоростью ее центромасс.

Энергия движения системы как целого.

Рассмотрим систему из n материальных точек. Общая работа dA, совершаемая всеми силами, приложенными к системе за время dt, будет

dA= сумма . Покажем, что суммарная работа, совершаемая всеми другими силами системы равна 0. Возьмем 2 точки системы – i и k.

(рисунок – прямая, на концах стрелки – слева Fik, справа Fki; на ней 2 точки i и k; соединенены вектором r ik; другая точка, от нее радиус-векторы r i и r k). Согласно 3мц закону Ньютона Fik = — Fki.

dAik = Fik*dri + Fki*drk = Fik*dri – Fik*drk = Fik (dri — drk) ; dri – drk = drik.

. Т.к. тело абсолютно твердое, то Fik*drik = const (т.к. для абсолютно твердого тела расстояние между любыми 2мя его точками остается в процессе движения неизменным). drik – т.к. |rik|= const, то вектор rik может менять только свое направление, следовательно изменение этого вектора будет направлено перпендикулярно вектору drik. Сила Fik перпендикулярна перемещению drik, следовательно такая сила работы не совершает – dAik = Fik*drik = 0, т.е. внутренние силы работы не совершают.

dA = сумма Fi*dri (где F – внешняя сила).

Если тело движется поступательно, то dri = drc ; dA= сумма Fi * drc = drc * сумма Fi = F *drc ; Получаем dA= F * drc ; Работа всех сил, приложенных к системе материальн ых точек равна работе внешних сил по перемещению центромасс этой системы. Wk = сумма mi * vi(ст.2) / 2 = mvc(ст.2) / 2.

Консервативные силы – действующие силы при перемещении тела из одного положения в другое не зависит от формы траектории движения, а зависит от начального и конечного положения тела. Для консервативной или потенциальной силы работа по перемещению тела по замкнутой траектории равна нулю.

Неконсервативные силы – действующие силы при перемещении тела из одного положения в другое зависит от формы траектории движения.

A = (интеграл с кружком в центре) Fdt=0 – условие потенциальной силы.

В противном случае сила называется диссипативной. Диссипативная сила зависит от скорости точек и совершает отрицательную работу.

Мощность – численно равна работе, совершенная за единицу времени

N = dA / dt – мгновенная мощность.

Энергия движения тела как целого. Пусть в системе материальных точек Fитое (вектор) – сумма всех сил приложенных к системе i-матер. Точке; изменение R вектора этой точки – dr (вектор); работа, совершаемая силами над всеми материальными точками будет равна dA=(знак суммы от i до n)Fidr; Работа производимая внутренними силами будет dAki+dAik; dAik=Fikdrik т.к. тело абсолютно твердое, то расстояние между двумя точками в процессе движения не изменится, т.е. rik=const. Тогда работа всех других внутренних сил равна 0. Если тело движется поступательно, то dA=(знак суммы от i до n)Fidr=dri(знак суммы от i до n)Fi=

=droFвнеш; A= Fвнеш(интеграл)dro=mv(ст.2)/2=Wк. Таким образом кинетическая энергия поступательного движения тела можно рассчитать как кинетическую энергию материальной точки, у которой m=mтела, V=Vцентромасс

Потенциальная энергия – механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Работа, совершаемая потенциальными силами при изменении конфигурации системы, т.е. расположении ее частей относительно системы отсчета не зависит от пути перехода из начального состояния в конечное. Эта работа A1-2 определяется только начальной и конечной конфигурацией систем, следовательно ее можно представить в виде разности значений некоторой функции конфигурации системы, называемой потенциальной энергией Wп. A1-2= Wп (1) – Wп (2);

dA= — dWп. В каждой конкретной задаче для получения однозначной энергетической зависимости каждой потенциальной рассматриваемой системы от ее конфигурации, выбирают нулевую конфигурацию, в которой потенциальная энергия системы считается равной нулю.

Потенциальной энергией механической системы называется величина, равная работе, которую совершают все действующие на систему потенциальные силы, при переводе системы из данного состояния в нулевое. dA= Fdr = Fx dx + Fy dy + Fz dz ; dA = — dWп ;

dWп = дWп*dx / дх + дWп*dy / дy + дWп*dz / дz

dA = Fdr = Fxdx + Fydy + Fzdz = — дWп*dx / дх — дWп*dy / дy — дWп*dz / дz

F = i * Fx + j * Fy + k * Fz = — (i *дWп / дх + j *дWп / дy + k *дWп / дz) = — gradWп

Потенциальная энергия материальной точки в однородном поле.Силовое поле однородно, если сила F одинакова во всех точках поля. Рассмотрим однородный случай. Пусть сила F, приложенная к материальной точке действует вдоль оси Z ; dWп = — dA = Fz dz ; Wп = (интеграл z0 – z1) Fz dz = — Fz (z1 – z0) = -Fz * z; Например тело в поле силы тяжести: F= mg; z = h; Wп= mgh

Закон сохранения энергии – энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного типа в другой.

Все законы сохранения связаны с определенными свойствами симметрии пространства и времени. Закон сохранения импульса связан с однородностью пространства, т.е. вид физических знаков не изменяется при параллельном переносе в пространстве системы отсчета. Закон сохранения энергии связан с однородностью времени, т.е. выбор начала отсчета времени не изменяет физических законов или физические законы инвариантны относительно выбора начала отсчета времени.

Полной энергией называется сумма кинетической и потенциальной энергий. Механическая система называется консервативной, если все приложенные к ней непотенциальные силы не совершают работу, а все потенциальные силы постоянны во времени. Потенциальная энергия системы может изменяться только за счет изменения ее консервации, поэтому если конфигурация системы не меняется, то Wп = const 

дWп / dt = 0. Рассмотрим консервативную систему, на которую действует внутренняя и внешняя консервативные силы и внешние диссепативные силы. Пусть вектор Fi – это внешняя консервативная сила, приложенная к внешней точке. Вектор Fi’ – внутренняя консервативная сила. Вектор f i – внешняя диссепативная сила. Запишем 2ой закон Ньютона для i-той точки материальн ой системы: m i * dv i / dt = Fi + Fi’ + f i ; dr = v i * dt ;

mi vi dt * dv / dt = (Fi’ + Fi) dvi + fi dri ; d (mi vi / 2) = (Fi’+Fi)dri+fidri

Для всей системы будет тоже самое, но ставится знак суммы перед каждым слагаемым. Отсюда следует dWk + dWп = dA ; d(Wk + Wп) = dA ;

A1-2 = (интеграл 1-2) d(Wk + Wп) ; A1-2 = (Wk + Wп)2 = — (Wk — Wп)1.

Если внешние силы не совершают работу, то dA=0 ; d (Wk + Wп) = 0 ;

т.е. полная энергия системы остается постоянной Wk + Wп = const

Твердое тело в механике

Условие равновесия твердого тела. Всякое движение твердого тела можно представить как сумму поступательного и вращательного движения. Отсюда вытекает 2 условия равновесия твердого тела: 1) F1+…+Fn = 0 – тело не движется поступательно ; 2) M1 +… Mk= 0 – тело не вращается.

Момент инерции тела относительно оси.

Моментом инерции материальной точки относительно оси называется величина J = m r (ст.2). Где r – расстояние от точки до оси вращения.

Wk = m*v*v / 2.

Если тело состоит из системы материальных точек, то момент его инерции будет равен сумме моментов инерций этих точек. Эта формула справедлива для дискретного распределения масс. В случае непрерывного распределения масс J = (интеграл) v (ст.2) dm .

Момент инерции сплошного диска

d J = r (ст.2) dm ; Площадь кольца: dS = 2ПИ r dr ; dV = rds = 2ПИrhdr

dm = ПЛОТНОСТЬ * dV = 2ПИ p h r dr ; p – плотность.

d J = 2ПИph r (ст.3) dr ; J = (интеграл 0 — R) 2ПИph r (ст.3) dr = 2ПИph *

* r (ст.4) / 4 | 0-R = 1/2 ПИ R (ст.2) ph R (ст.2) ; m = ПИ R(ст.2) ph ;

J=1/2 m R (ст.2)

Момент инерции стержня. dm = (m / l) * dr ; d J = r (ст.2)*dr ; J = (m / 3l) ((l-a)(ст.3) +a(ст.3))

Если a =0, то J = 1/3 m l (ст.2)

Теорема Штейнера: Момент инерции тела относительно произвольной оси равен массе тела, умноженной на квадрат расстояния от оси вращения до центромасс тела, плюс момент инерции тела относительно оси, параллельной данной и проходящей через его ось центромасс.

J = ma (ст.2) + J нулевое ; r i = a + Ri ; mi ri (ст.2) = mi (a — Ri) (ст.2) = mi (a (ст.2) + 2aRi + Ri (ст.2)) = a (ст.2)mi + mi Ri (ст.2) + 2amiRi ; J=сумма(miri2)

Теорема Штейнера J = ma (ст.2) + J центромасс.

Вращательный момент. Моментом силы M называется величина M=

(* — скалярное произведение, все значения векторные) r – радиус-вектор, F – сила ; r *sinАЛЬФА = l ; M = r F sinАЛЬФА = r sinАЛЬФА F = F l

(рисунок – вектор M вверх; вектор r чуть выше места, где по идее должна быть ось OX; на 90 градусов от r от M проходит из той же точки прямая L ; векотор F скрещивается с r под углом АЛЬФА).

Основное уравнение динамики вращательного движения. Wk = 1/2 J * w(ст.2) ; dWk = 1/2 J 2w dw = Jwdw ; dWk = dA ; M dФИ = Jwdw;

M dФИ/dt = Jw dw/dt ; w = dФИ/dt ; E = dw/dt ; M w = J w E ; M = J E (M,E — вектора). Основное уравнение динамики вращательного движения. Это аналог 2го закона Ньютона для вращательного движения. (F-M, m-J, a-E).

Кинетическая энергия катящегося тела. При вращательном движении катящегося тела каждая точка участвует в 2х движениях – поступательном и вращательном. Скорость поступательного движения всех точек колеса одинакова и равна скорости поступательного движения колеса в целом.

mi vi (ст.2) / 2 ; vi (ст.2) = v пост. (ст.2) + vi вращ. (ст.2) ; v вращ. = wRi ;

mi vi (ст.2) / 2 = 1/2 mi v пост. (ст.2) + 1/2 mi w (ст.2) Ri (ст.2) ;

Wk = сумма (mi vi (ст.2) / 2) = 1/2 v пост (ст.2) СУММА(mi) + 1/2 w(ст.2) СУММА(mi Ri (ст.2)) ; Wk = 1/2 m v пост. (ст.2) + 1/2 J w (ст.2)

Работа при вращательном движении. dA = Fds = F sinАЛЬФА ds = F r sinАЛЬФА dФИ ; ds = r dФИ ; ds = r dФИ ; dA = M dФИ ; ФИ – угол поворота при повороте на большой угол. A=(интеграл ФИ1-ФИ2) M dФИ

Для материальных точек Wk = 1/2 mv(ст.2) = 1/2 m r (ст.2) w (ст.2)=1/2 J w (ст.2) ; v = w r ; Wk = 1/2 J w (ст.2)

Закон сохранения момента импульса

Моментом импульса (моментом количества движения) материальной точки относительно оси называется векторная величина L = r * P ; где все величины – векторы ; r – расстояние от оси вращения до этой точки. Импульс точки: P = mv.

Моментом силы M называется величина M=r *F

Моментом импульса твердого тела относительно оси является

L = сумма ri Pi ; |L| = |r | |P| sinАЛЬФА ; Рассмотрим случай, когда АЛЬФА=ПИ/ 2: L = сумма mi vi ri = w сумма mi vi (ст.2) = J w; L = J w ;

Продефференцируем это выражение по времени: dL / dt = J dw/dt = J центромасс = M ; dL / dt = M ; Если M= 0, то dL / dt = 0  L = const

Это закон сохранения момента импульса — Если на систему тел не действует момент силы M или равнодействующая всех сил равна нулю, то момент импульса этой системы остается постоянным. Закон сохранения момента импульса является фундаментальным законом физики. Он справедлив не только в классической механике, но и в релятивистской и в квантовой механике. Закон сохранения момента импульса связан с изотропностью пространства – пространство обладает одинаковыми свойствами во всех направлениях.

Принцип относительности в механике

Инерциальная система отсчета и принцип относительности.

Инерциальная система отсчета – всякая система отсчета, которая движется равномерно и прямолинейно

Принципа относительности Галелея — во всех инерциальных системах отсчета законы классической механики имеют одинаковую форуму.

В Ньютоновской механике при переходе от одной инерциальной системы отсчета k (x, y, z, t) к другой k’ (x’, y’, z’, t’), движущейся относительно 1ой со скоростью u, справедливы преобразования Галелея. Они основаны на 2х аксиомах – об неизменности промежутков времени между 2мя событиями и расстояния между 2мя точками по отношению к центру системы отсчета. Иными словами – время течет одинаково во всех инерциальных системах отсчета и размеры тел не меняются при переходе от одной инерциальной системы отсчета к другой. r = r’ + r нулевое = r’ + u t ; U – скорость ; r – радиус вектор до точки от 1ой системы отсчета; r ‘ – радиус-вектор до точки от 2ой системы ; r нулевой – расстояние от одной системы до другой ; Будем считать, что скорость u направлена вдоль радиус-вектора r нулевое:

x = x’ + Ux t ; y = y’ + Uy t ; z = z’ + Uz t ; t = t’ – преобразования Галилея

v = dr / dt = dr / dt + dr нулевое / dt ; v = v’ + u ; a = dv / dt = a’ ; a = a’ ;

При таком переходе ускорение не меняется ; z = z’ ;

Инварианты преобразований — уравнения динамики не изменяются при переходе от одной инерциальной системы отсчета к другой. Иными словами – никакими механическими опытами нельзя определить движение инерциальной системы отсчета.

Постулаты специальной теории относительности. Специальная теория относительности также как и Ньютоновская механика предполагает, что время однородно, а пространство однородно и изотопно. В основе специальной теории относительности лежат 2 постулата, которые являются результатом экспериментально установленных закономерностей.

1 постулат обобщает принцип механической независимости Галилея на все физические явления. В любых инерциальных системах отсчета все физические явления при одних и тех же условиях протекают одинакова.

2 постулат выражает принцип инвариантности скорости света. Скорость света в вакууме не зависит от скорости движения источника. Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме является предельной скоростью в природе.

Эйнштейн пересмотрел классические свойства пространства и времени. Он предположил, что время в различных инерциальных системах отсчета течет неодинаково. Пространство и время в теории относительности рассматривается совместно, а не обособленно, как в Ньютоновской механике. Они образуют единое 4х-мерное пространство и время. Возьмем в таком 4х-мерном пространстве и времени декартовую систему координат с осями (x, y, z, ct). Положение тела в таком 4х-мерном пространстве изображается точкой с координатами (x, y, z, ct). Эта точка называется мировой точкой. Со временем она меняет свое положение, описывая в 4х-мерном пространстве некоторую линию, называемую мировой линией. Даже в том случае, если тело остается неподвижным в обычном 3х-мерном пространстве, его мировая точка перемещается вдоль оси ct.

Выберем 2 инерциальные системы отсчета k (x, y, z, t) и k’ (x’, y’, z’, t’). Будем считать, что система отсчета k’ движется относительно системы k со скоростью v, направленной вдоль оси OX. Пусть в начальный момент времени начала этих систем отсчета совпадают. В этот момент из начала отсчета вдоль оси OX излучается световой импульс. За время t в системе отсчета k он дойдет до точки ; x = ct ; x’ = ct’

ГАММА (x — vt) = x’ ; ГАММА (x’ – vt’) = x ;

ГАММА (ct — vt) = ct’ УМНОЖАЕМ НА ГАММА (ct + t) = ct ; ПОЛУЧАЕМ ГАММА (ст.2) (c (ст.2) – v (ст.2)) = c (ст.2);

ГАММА = 1 / ;

В k : x = (x’ + vt’) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

В k’ : x = (x + vt) / (корень) (1-v(ст.2)/c(ст.2)) ; y = y’ ; z = z’

Используем значение ГАММА из предыдущего выражения:

t = (t’ + x’ v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

t’ = (t + x v/c (ст.2)) / ((корень) 1 – v(ст.2)/ c (ст.2))

Преобразования Лоренца связывают координаты и время в различных инерциальных системах отсчета. В приделе при c  к бесконечности, преобразования Лоренца переходят в преобразования Галилея. Различие в течении времени в разных инерциальных системах отсчета обусловлено существованием предельной скорости взаимодействий. При малых скоростях движений v0 преобразования Лоренца переходят в преобразования Галилея.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *