Кинематика в физике определение

Как описать движение?

Описать можно все что угодно: картину в галерее, уличного хулигана в кабинете участкового и даже свои душевные переживания на приеме у психотерапевта. Достаточно вооружиться бумагой, ручкой и вперед. Но что необходимо, чтобы описать движение? На этот вопрос нам поможет ответить кинематика, раздел механики, который как раз и занимается описанием механического движения.

Давайте разберемся с терминологией и введем основные понятия, без которых нам никак не обойтись. Итак, движением мы будем называть любое изменение положения тела в пространстве с течением времени. К слову сразу отметим, что время в физике принято мерить секундами, а само движущееся тело не всегда рассматривается целиком. Зачастую его размерами и формой можно пренебречь и рассматривать как точку, имеющую массу. В механике вы можете услышать такие понятия как точечное тело или материальная точка. Так вот знайте, речь идет как раз об этом. К примеру, какие бы габариты не имела ваша машина, если вы едете по трасе из Ростова в Москву, то она в любом случае очень мала в сравнении с расстоянием, а значит мы можем рассматривать её как материальную точку. А вот если, приехав в столицу нашей необъятной родины, вы ищете свободное место где припарковаться, то тут размерами и формой автомобиля пренебречь уже не получится.

Положение тела или материальной точки в пространстве рассматривается с помощью системы координат, за начало которой мы принимаем тело отсчета, относительно которого происходит движение. В зависимости от сложности этого движения мы можем иметь дело с одномерным, двухмерным, или трехмерным пространством. Соответственно, наша система координат может иметь одну, две или три оси. Как правило трехмерные пространства в школьной физике практически не встречаются, поэтому мы ограничимся двухмерным с координатными осями х и у. Чтобы определить координаты нашей материальной точки, необходимо построить её проекции на соответствующие координатные оси, опустив на них перпендикуляры.

Теперь если наблюдая за движущейся материальной точкой, построить линию, по которой она движется, мы получим траекторию движения. Измерив длину траектории можно определить пройденный путь, а если построить вектор, соединяющий начальное и конечное положение точки, это будет перемещение.

Так как единицей длинны в международной системе единиц был принят метр, то путь, пройденный телом, и длина вектора перемещения, или, как еще говорят, его модуль, так же будут измерятся в метрах. Отметим, что модуль перемещения всегда будет меньше, ну или в крайнем случае равен пути, но никак не больше. Все просто, вектора кривыми не бывают, и перемещение не является исключением. А вот что касается траектории, то её мы можем гнуть как угодно. Исходя из этого, можно выделить два вида механического движения: прямолинейное — когда траектория прямая линия и криволинейное — когда тело движется по кривой, ну, к примеру, параболе или окружности.

Прямолинейное движение

Давайте представим, что мы едем в автобусе, а для простоты будем считать, что траектория нашего движения — прямая линия. Если разделить весь путь (s), который мы проедем на затраченное время (t), мы получим скорость (v). То есть величину, которая характеризует быстроту движения. Измеряется она в метрах в секунду м/с.

v=s/t

Так как движение относительно, то относительной будет и скорость. К примеру, если наш автобус едет со скоростью v1, ну скажем, равной 20 м/с, а мы, находясь в автобусе, идем в направлении водителя со скоростью v2, равной 1 м/с, то наша скорость относительно дороги будет определятся как сумма двух этих скоростей. То есть 21 м/с.

v=v1+v2

Ну а если мы будем идти от водителя, то наша скорость относительно дороги будет уже равна 19 м/с. И казалось бы, ничего не поменялось, и значения скоростей v1 и v2 остались прежними, но изменилось направление нашего движения, а значит, чтобы найти скорость, с которой мы движемся относительно дороги, нам нужно вычесть v2 из v1 .

v=v1-v2

В рассмотренных примерах мы условно принимали движение как равномерное, то есть движение с постоянной скоростью. Но в реальности, автобус то и дело будет останавливаться на светофорах и остановках, а потом опять разгоняться. Обгонять неторопливых автолюбителей. Да и у нас не получится ходить по нему с постоянной скоростью, тем более если ехать в час пик, когда автобус забит под завязку. В реальности движение будет неравномерным, и скорость будет постоянно меняться. При неравномерном движении отношение всего пройденного пути ко времени называется средней скоростью.

vср=s/t

И хотя в некоторых случаях она бывает очень удобна, но все же не всегда приемлема при описании движения. Думаю, будет очень трудно доказать сотруднику гос автоинспекции, остановившему вас за превышение скорости, что ваша средняя скорость на всем пути была в пределах нормы. Тут речь пойдет о мгновенной скорости, или скорости в какой-то определенный момент времени. Если посмотреть на спидометр движущегося автомобиля, то мы как раз её увидим. И стоит нам по сильнее нажать на педаль газа, как в то же мгновение стрелка спидометра начинает ползти вверх, оповещая нас об изменении скорости.

И здесь необходимо ввести понятие ускорения, величины, которая будет характеризовать изменение скорости движения за какой то промежуток времени (t). Её принято обозначать маленькой буквой a и измерять в м/с2.

а=(V-V0)/t

Ускорение, так же как и скорость, величина векторная, а значит будет иметь свое направление. Причем, если направление вектора ускорения будет совпадать с направлением скорости, то скорость будет возрастать. Такое движение называют ускоренным. И напротив, снижение скорости, при замедленном движении, будет свидетельствовать о том что вектора ускорения и скорости смотрят в разные стороны.
Выразим скорость и перемещение для движения с ускорением:

v=v0+a*t
s=v*t+(a*t2)/2

Если объединить эти уравнения в одно, мы получим формулу разности квадратов скоростей :

2a*s=v2-v02

Итак, мы ввели основные понятия и величины кинематики и вывели основные уравнения, связывающие их. Но для простоты мы брали прямолинейное движение. Если же говорить о движении по кривой, то нам придется уже рассматривать его в двухмерном или даже трехмерном пространстве. Для этого необходимо будет построить проекции векторов скорости, перемещения и ускорения на соответствующие координатные оси, а при работе с проекциями мы опять получим уже знакомые уравнения для прямолинейного движения, которые примут следующий вид:

Sx= V0x t +(axt2) /2
Sy= V0у t +(aуt2) /2
vx=v0x+axt
vy=v0y+ayt

Или для определения координат движущейся материальной точки:

x= x 0 + V0x t +(axt2) /2
y= y 0 + V0у t +(aуt2) /2

Где х0, у0 — координаты начального положения точки в пространстве, а х, у — координаты её конечного положения.
Для описания движения в трехмерном пространстве у нас добавится третья ось z, и, соответственно, проекции скорости, ускорения и перемещения на эту ось.

Принцип разложения движения на простые составляющие лежит в основе многих устройств. Так первые компьютерные мыши были оснащены шариком, вращение которого приводило во вращение два перпендикулярно расположенных друг к другу колесика со специальными датчиками, они то и раскладывали сложные движения мыши на горизонтальные и вертикальные составляющие. Стоило одному из этих колесиков покрыться толстым слоем грязи, как оно переставало вращаться, и указатель на экране начинал двигаться только по прямой, горизонтальной или вертикальной. Современные оптические мыши лишены этого недостатка, так как в них шарик и колесики, заменены на лазерные датчики, но тем не менее принцип разложения движения они унаследовали от своих прародительниц.

КИНЕМАТИКА.
Теория и формулы (кратко и сжато)

Кинематика – раздел физики, изучающий способы математического описания движения без выяснения его причин.

Механическое движение – изменение положения тела относительно других тел с течением времени. Способы описания: словесный, табличный, графический, формулами.

Материальная точка – тело, собственными размерами которого в данных условиях можно пренебречь.

Траектория – линия, которую описывает материальная точка при своём движении в пространстве. По виду траектории все движения делятся на прямолинейные и криволинейные.

Система отсчёта – часы и система координат, связанные с условно выбираемым телом отсчёта (наблюдателем).

Относительность движения – различие скорости, направления и траектории движения в различных системах отсчёта.

Перемещение – вектор, проведённый из начального положения материальной точки в её конечное положение.

Типы движений

1. Равномерное движение

1.1. Равномерное прямолинейное движение

Равномерное движение – движение тела, при котором за равные интервалы времени оно преодолевает равные части пути.

Скорость равномерного движения равна отношению пройденного пути к интервалу времени, за который этот путь пройден.

Скорость равномерного прямолинейного движения равна отношению перемещения к интервалу времени его совершения.

Уравнение равно-прямолинейного движения x = xo + υoxt показывает, что координата линейно зависит от времени.

Мгновенная скорость равна отношению перемещения к бесконечно малому интервалу времени, за который оно произошло.

1.2 Равномерное движение по окружности (равномерное вращение)

Равномерное движение по окружности — это движение, при котором материальная точка за равные промежутки времени проходит равные по длине дуги окружности.

Равномерное движение тела по окружности — это частный и наиболее простой случай криволинейного движения. Хотя при таком движении модуль скорости остается постоянным, это движение с ускорением, которое является следствием изменения направления вектора скорости.

2. Движение с постоянным ускорением

Равноускоренное движение – движение, при котором мгновенная скорость за любые равные интервалы времени меняется одинаково.

Мгновенное ускорение равно отношению изменения мгновенной скорости тела к бесконечно малому интервалу времени, за который это изменение произошло.

Ускорение равноускоренного движения равно отношению изменения мгновенной скорости тела к интервалу времени, за который это изменение произошло.

Уравнение равноускоренного движения y = yo + υoyt + ½ayt² показывает, что координата квадратично зависит от времени. Уравнение υy = υoy + ayt  показывает, что скорость линейно зависит от времени.

Центростремительное ускорение – ускорение, всегда направленное к центру окружности при равномерном движении по ней материальной точки. Модуль центростремительного ускорения равен отношению квадрата модуля скорости равномерного движения по окружности к её радиусу.

3. Гармоническое движение

Кинематика. Все формулы. Шпаргалка

1 file(s) 413.13 KB

Виды движений

Криволинейное движение

Частные случаи равноускоренного движения под действием силы тяжести

Частные случаи решения задач

Кинематика. Таблица кратко.

1 file(s) 413.13 KB

Это конспект по физике «Кинематика. Теория и формулы для ЕГЭ» + шпаргалка.

Еще конспекты для 10-11 классов:

  • Молекулярно-кинетическая теория
  • Кинематика. Теория и формулы + Шпаргалка
  • Динамика. Теория и формулы + Шпаргалка
  • Законы сохранения. Работа и мощность. Теория, Формулы, Шпаргалка
  • Статика и гидростатика. Теория и формулы + Шпаргалка
  • Термодинамика. Теория, формулы, схемы
  • Электростатика. Теория и формулы + Шпаргалка
  • Постоянный ток. Теория, формулы, схемы
  • Магнитное поле. Теория, формулы, схемы
  • Электромагнитная индукция
  • Закон сохранения импульса. Задачи ЕГЭ с решениями
  • Колебания и волны. Задачи ЕГЭ с решениями
  • Физика 10 класс. Все формулы и темы
  • Физика 11 класс. Все формулы и определения
  • Световые кванты
  • ЕГЭ Квантовая физика. Задачи с решениями
  • Излучения и спектры
  • Атомная физика (физика атома)

Кинематика (физика)

У этого термина существуют и другие значения, см. Кинематика.

Кинема́тика (греч. κινειν — двигаться) в физике — раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения того, какую природу имеет сила, его порождающая. Причинами возникновения механического движения занимается другой раздел механики — динамика.

Различают классическую кинематику, в которой пространственные (длины отрезков) и временные (промежутки времени) характеристики движения считаются абсолютными, то есть не зависящими от выбора системы отсчёта, и релятивистскую. В последней длины отрезков и промежутки времени между двумя событиями могут изменяться при переходе от одной системы отсчёта к другой. Относительной становится также одновременность. В релятивистской механике вместо отдельных понятий пространство и время вводится понятие пространства-времени, в котором инвариантным относительно преобразований Лоренца является величина, называемая интервалом.

  • 1 История кинематики
  • 2 Основные понятия кинематики
  • 3 Задачи кинематики
  • 4 Деление кинематики по типам объекта исследования
    • 4.1 Кинематика точки
    • 4.2 Кинематика твёрдого тела
    • 4.3 Кинематика деформируемого тела, Кинематика жидкости
    • 4.4 Кинематика газа
  • 5 Примечания
  • 6 Литература

История кинематики

Долгое время понятия о кинематике были основаны на работах Аристотеля, в которых утверждалось, что скорость падения пропорциональна весу тела, а движение в отсутствие сил невозможно. Только в конце XVI века этим вопросом подробно занялся Галилео Галилей. Изучая свободное падение (знаменитые опыты на Пизанской башне) и инерцию тел, он доказал неправильность идей Аристотеля. Итоги своей работы по данной теме он изложил в книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению».

Рождением современной кинематики можно считать выступление Пьера Вариньона перед Французской Академией наук 20 января 1700 года. Тогда впервые были даны понятия скорости и ускорения в дифференциальном виде.

В XVIII веке Ампер первый использовал вариационное исчисление в кинематике.

После создания СТО, показывающей, что время и пространство не абсолютны и скорость имеет принципиальное ограничение, кинематика вошла в новый этап развития в рамках релятивистской механики (см. Релятивистская кинематика).

Основные понятия кинематики

  • Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
  • Система отсчёта — сопоставленная с континуумом реальных или воображаемых тел отсчёта система координат и прибор(ы) для измерения времени (часы). Используется для описания движения.
  • Координаты — способ определения положения точки или тела с помощью чисел или других символов.
  • Радиус-вектор используется для задания положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
  • Траектория — непрерывная линия, которую описывает точка при своём движении.
  • Скорость — векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта.
  • Ускорение — векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени.
  • Угловая скорость — векторная величина, характеризующая скорость вращения тела.
  • Угловое ускорение — величина, характеризующая быстроту изменения угловой скорости.

Задачи кинематики

Главной задачей кинематики является математическое (уравнениями, графиками, таблицами и т. п.) определение положения и характеристик движения точек или тел во времени. Любое движение рассматривается в определённой системе отсчёта. Также кинематика занимается изучением составных движений (движений в двух взаимно перемещающихся системах отсчёта).

Положение точки (или тела) относительно заданной системы отсчёта определяется некоторым количеством взаимно независимых функций координат:

,

где определяется количеством степеней свободы. Так как точка не может быть в нескольких местах одновременно, все функции должны быть однозначными. Также в классической механике выдвигается требование их дифференцируемости на промежутках. Производные этих функций определяют скорость тела.

Скорость движения определяется как производная координат по времени:

,

где — единичные векторы, направленные вдоль соответствующих координат.

Ускорение определяется как производная скорости по времени:

Следовательно, характер движения можно определить, зная зависимость скорости и ускорения от времени. А если кроме этого известны ещё и значения скорости/координат в определённый момент времени, то движение полностью задано.

Деление кинематики по типам объекта исследования

В зависимости от свойств изучаемого объекта, кинематика делится на кинематику точки, кинематику твёрдого тела, кинематику деформируемого тела, кинематику газа, кинематику жидкости и т. д.

Кинематика точки

Основная статья: Кинематика точки

Кинематика точки изучает движение материальных точек — тел, размерами которых можно пренебречь по сравнению с характерными размерами изучаемого явления. Поэтому в кинематике точки скорость, ускорение, координаты всех точек тела считаются равными.

Частные случаи движения в кинематике точки:

  • Если ускорение равно нулю, движение прямолинейное (траектория представляет собой прямую) и равномерное (скорость постоянна).

,

где — длина пути траектории за промежуток времени от до , — проекции на соответствующие оси координат.

  • Если ускорение постоянно и лежит в одной прямой со скоростью, движение прямолинейное, равнопеременное (равноускоренное, если ускорение и скорость направлены в одном направлении; равнозамедленное — если в разные).

,

где — длина пути траектории за промежуток времени от до , — проекции на соответствующие оси координат, — проекции на соответствующие оси координат.

  • Если ускорение постоянно и перпендикулярно скорости, движение происходит по окружности — вращательное движение.

,

где — радиус окружности, по которой движется тело.

Если выбрать систему декартовых координат xyz так, чтобы центр координат был в центре окружности, по которой движется точка, оси y и x лежали в плоскости этой окружности, так чтобы движение осуществлялось против часовой стрелки, то значения координат можно вычислить по формулам:

Для перехода в другие системы координат используются преобразования Галилея для скоростей намного меньших скорости света, и преобразования Лоренца для скоростей, сравнимых со скоростью света.

  • Если ускорение постоянно и не лежит на одной прямой с начальной скоростью, движение параболическое.

Если выбрать систему декартовых координат xyz так, чтобы ускорение и начальная скорость лежали в плоскости xy и ускорение было сонаправленно с осью y, то значения координат можно вычислить по формулам:

,

где и — проекции на соответствующие оси.

Для перехода в другие системы координат используются преобразования Галилея для скоростей намного меньших скорости света, и преобразования Лоренца для скоростей, сравнимых со скоростью света.

  • Если тело выполняет разные движения в разных направлениях, то эти движения могут рассчитываться отдельно и складываться по принципу суперпозиции. Например, если в одной плоскости тело совершает вращательное движение, а по оси, перпендикулярной этой плоскости — равномерное поступательное, то вид движения — винтовая линия с постоянным шагом.
  • В общем виде скорость, ускорение и координаты вычисляются по общим формулам (см. задачи кинематики), путь вычисляется по формуле:

Кинематика твёрдого тела

Основная статья: Кинематика твёрдого тела

Кинематика твёрдого тела изучает движение абсолютно твёрдых тел (тел, расстояние между двумя любыми точками которого не может изменяться).

Так как любое тело ненулевого объёма имеет бесконечное число точек, и соответственно бесконечное число фиксированных связей между ними, тело имеет 6 степеней свободы и его положение в пространстве определяется шестью координатами (если нет дополнительных условий).

Связь скорости двух точек твердого тела выражается через формулу Эйлера:

,

где — вектор угловой скорости тела.

Кинематика деформируемого тела, Кинематика жидкости

Основные статьи: Кинематика деформируемого тела, Кинематика жидкости

Кинематика деформируемого тела и кинематика жидкости относятся к кинематике непрерывной среды.

Кинематика газа

Основная статья: Кинематика газа

Кинематика газа изучает деление газа на скопления при движении и описывает движение этих скоплений. В рамках кинематики газа описываются не только основные параметры движения, но и типы движения газа.

> Примечания

  1. Научная биография Галилео Галилея
  2. Кинематика — статья из Физической энциклопедии

Литература

  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. — М.: Изд-во Физического факультета МГУ, 1997.
  • Матвеев. А. Н. Механика и теория относительности. — М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Павленко Ю. Г. Лекции по теоретической механике. — М.: ФИЗМАТЛИТ, 2002. — 392 с.
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. — М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560с.
  • Стрелков С. П. Механика. — М.: Наука, 1975.
  • Яворский Б. М., Детлаф А. А. Справочник по физике для инженеров и студентов вузов (4-е изд.). — М.: Наука, 1968.

Для улучшения этой статьи желательно?:

  • Проставив сноски, внести более точные указания на источники.
  • Добавить иллюстрации.
  • Викифицировать список литературы, используя шаблон {{книга}}, и проставить ISBN.

Тема 1. «Механика. Основы кинематики».

Кинематика — часть механики, в которой изучают движение материальной точки, не рассматривая причины, вызывающие это движение.

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени.

Основная задача механики — определить положение тела в пространстве в любой момент времени.

Движение, при котором все точки тела движутся одинаково, называется поступательным движением тела.

Тело, размерами которого в условиях изучаемого движения можно пренебречь, называется материальной точкой

Тело отсчета — это любое тело, условно принимаемое за неподвижное, относительно которого рассматривается движение других тел.

Часы — прибор, в котором периодическое движение используется для измерения промежутков времени.

Система отсчета представляет собой тело отсчета, связанную с ним систему координат и часы.

ТРАЕКТОРИЯ, ПУТЬ И ПЕРЕМЕЩЕНИЕ

Траектория — линия, которую описывает при своем движении материальная точка.

Путь — это длина траектория движения тела.

Перемещением тела называют вектор, соединяющий начальное положение тела с его конечным положением.

ПЕРЕМЕЩЕНИЕ И СКОРОСТЬ ПРИ ПРЯМОЛИНЕЙНОМ РАВНОМЕРНОМ ДВИЖЕНИИ

Прямолинейное движение — движение, траекторией которого является прямая линия.

Движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения называют равномерным движением .

Скорость равномерного прямолинейного движения -отношение вектора перемещения тела за любой промежуток времени к величине этого промежутка:

Зная скорость, можно найти перемещение за известный промежуток времени по формуле

При прямолинейном равномерном движении векторы скорости и перемещения имеют одинаковое направление.

Проекция перемещения на ось х : sx = xt. Так как sx = х -х0, то координата тела х = x0+sx. Аналогично для оси у: у = y0 + sy.

В результате получаем уравнения прямолинейного равномерного движения тела в проекциях на оси х и у:

ОТНОСИТЕЛЬНОСТЬ ДВИЖЕНИЯ

Положение тела относительно, то есть оно различно в разных системах отсчета. Следовательно, относительно и его движение.

СКОРОСТЬ ПРИ НЕРАВНОМЕРНОМ ДВИЖЕНИИ

Неравномерным называется движение, при котором скорость тела со временем изменяется.

Средняя скорость неравномерного движения равна отношению вектора перемещения к времени нахождения в пути

Тогда перемещение при неравномерном движении

Мгновенной скоростью называется скорость тела в данный момент времени или в данной точке траектории.

УСКОРЕНИЕ. РАВНОУСКОРЕННОЕ ДВИЖЕНИЕ

Равноускоренным называется движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково.

Ускорением тела называют отношение изменения скорости тела ко времени, за которое это изменение произошло.

Ускорение характеризует быстроту изменения скорости.

Ускорение — векторная величина. Оно показывает, как изменяется мгновенная скорость тела за единицу времени.

Зная начальную скорость тела и его ускорение, из формулы (1) можно найти скорость в любой момент времени:

Для этого уравнение нужно записать в проекциях на выбранную ось:

Vx=V0x+ axt

Графиком скорости при равноускоренном движении является прямая.

ПЕРЕМЕЩЕНИЕ И ПУТЬ ПРИ ПРЯМОЛИНЕЙНОМ РАВНОУСКОРЕННОМ ДВИЖЕНИИ

Предположим, что тело совершило перемещение за время t, двигаясь с ускорением . Если скорость изменяется от до и учитывая, что,

получим

Используя график скорости, можно определить пройденный телом за известное время путь — он численно равен площади заштрихованной поверхности.

СВОБОДНОЕ ПАДЕНИЕ ТЕЛ

Движение тел в безвоздушном пространстве под действием силы тяжести называют свободным падением .

Свободное падение — это равноускоренное движение. Ускорение свободного падения в данном месте Земли постоянно для всех тел и не зависит от массы падающего тела: g = 9,8 м/с 2 .

Для решения различных задач из раздела «Кинематика» необходимы два уравнения:

Пример: Тело, двигаясь равноускоренно из состояния покоя, за пятую секунду прошло путь 18 м. Чему равно ускорение и какой путь прошло тело за 5 с?

За пятую секунду тело прошло путь s = s 5 — s 4 и s 5 и s 4 — расстояния, пройденные телом соответственно за 4 и 5 с.

Ответ: тело, двигаясь с ускорением 4 м/с 2 , за 5 с прошло 50 м.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *