Коричневый карлик звезда

Содержание

Астрономы не ставят экспериментов — они получают информацию с помощью наблюдений. Как сказал один из представителей этой профессии, не существует настолько длинных приборов, чтобы ими можно было дотянуться до звезд. Однако в распоряжении астрономов имеются физические законы, которые позволяют не только объяснять свойства уже известных объектов, но и предсказывать существование еще не наблюдавшихся.

Предвидение Шива Кумара

Про нейтронные звезды, черные дыры, темную материю и иные космические экзоты, вычисленные теоретиками, наслышаны многие. Однако во Вселенной немало и других диковинок, открытых тем же способом. К их числу относятся тела, занимающие промежуточное положение между звездами и газовыми планетами. В 1962 году их предсказал Шив Кумар, 23-летний американский астроном индийского происхождения, только что защитивший докторскую диссертацию в Мичиганском университете. Кумар назвал эти объекты черными карликами. Позднее в литературе фигурировали такие имена, как черные звезды, объекты Кумара, инфракрасные звезды, однако в конце концов победило словосочетание «коричневые карлики» (brown dwarfs), предложенное в 1974 году аспиранткой Калифорнийского университета Джилл Тартер.

Четыре года международная команда астрономов «взвешивала» ультрахолодный карлик класса L (6,6% солнечной массы) с помощью телескопа «Хаббл», VLT и телескопа им. Кека.

Кумар шел к своему открытию четыре года. В те времена основы динамики рождения звезд уже были известны, но в деталях оставались изрядные пробелы. Однако Кумар в целом столь верно описал свойства своих «черных карликов», что впоследствии с его заключениями согласились даже суперкомпьютеры. Все-таки человеческий мозг как был, так и остается лучшим научным инструментом.

Рождение недозвезд

Звезды возникают в результате гравитационного коллапса космических газовых облаков, которые в основном состоят из молекулярного водорода. Кроме того, там имеется гелий (один атом на 12 атомов водорода) и следовые количества более тяжелых элементов. Коллапс завершается рождением протозвезды, которая становится полноправным светилом, когда ее ядро разогревается до такой степени, что там начинается устойчивое термоядерное горение водорода (гелий в этом не участвует, поскольку для его поджога нужны температуры в десятки раз выше). Минимальная температура, необходимая для воспламенения водорода, составляет около 3 млн градусов.

Кумара интересовали самые легкие протозвезды с массой не выше одной десятой массы нашего Солнца. Он понял, что для запуска термоядерного горения водорода они должны сгуститься до большей плотности, нежели предшественники звезд солнечного типа. Центр протозвезды заполняется плазмой из электронов, протонов (ядер водорода), альфа-частиц (ядер гелия) и ядер более тяжелых элементов. Случается, что еще до достижения температуры поджога водорода электроны дают начало особому газу, свойства которого определяются законами квантовой механики. Этот газ успешно сопротивляется сжатию протозвезды и тем препятствует разогреву ее центральной зоны. Поэтому водород либо вообще не зажигается, либо гаснет задолго до полного выгорания. В таких случаях вместо несостоявшейся звезды формируется коричневый карлик.

Возможность вырожденного ферми-газа к сопротивлению гравитационному сжатию отнюдь не беспредельна, и это легко показать на пальцах. По мере того как электроны заполняют все более высокие уровни энергии, их скорости возрастают и в конце концов приближаются к световой. В этой ситуации сила тяготения одерживает верх и гравитационный коллапс возобновляется. Математическое доказательство сложнее, но вывод аналогичен. Так и получается, что квантовое давление электронного газа останавливает гравитационный коллапс, лишь если масса коллапсирующей системы остается ниже определенной границы, соответствующей 1,41 массы солнца. Она называется пределом чандрасекара — в честь выдающегося индийского астрофизика и космолога, который вычислил ее в 1930 году. Предел чандрасекара задает максимальную массу белых карликов, о чем нашим читателям наверняка известно. Однако предшественники коричневых карликов в десятки раз легче и о пределе чандрасекара могут не беспокоиться.

Кумар вычислил, что минимальная масса нарождающейся звезды равна 0,07 массы Солнца, если речь идет о сравнительно молодых светилах популяции I, которым дают начало облака с повышенным содержанием элементов тяжелее гелия. Для звезд популяции II, возникших более 10 млрд лет назад, во времена, когда гелия и более тяжелых элементов в космическом пространстве было гораздо меньше, она равна 0,09 солнечной массы. Кумар нашел также, что формирование типичного коричневого карлика занимает около миллиарда лет, а его радиус не превышает 10% радиуса Солнца. Наша Галактика, как и другие звездные скопления, должна содержать великое множество таких тел, но их трудно обнаружить из-за слабой светимости.

Как они зажигаются

Со временем эти оценки не особенно изменились. Сейчас считают, что временное возгорание водорода у протозвезды, родившейся из относительно молодых молекулярных облаков, происходит в диапазоне 0,07−0,075 солнечной массы и длится от 1 до 10 млрд лет (для сравнения, красные карлики, самые легкие из настоящих звезд, способны светить десятки миллиардов лет!). Как отметил в беседе с «ПМ» профессор астрофизики Принстонского университета Адам Барроуз, термоядерный синтез компенсирует не более половины потери лучистой энергии с поверхности коричневого карлика, в то время как у настоящих звезд главной последовательности степень компенсации составляет 100%. Поэтому несостоявшаяся звезда охлаждается даже при работающей «водородной топке» и тем более продолжает остывать после ее заглушки.

Протозвезда с массой менее 0,07 солнечной поджечь водород вообще не способна. Правда, в ее недрах может вспыхнуть дейтерий, поскольку его ядра сливаются с протонами уже при температурах в 600−700 тысяч градусов, порождая гелий-3 и гамма-кванты. Но дейтерия в космосе немного (на 200 000 атомов водорода приходится всего один атом дейтерия), и его запасов хватает всего на несколько миллионов лет. Ядра газовых сгустков, не достигших 0,012 массы Солнца (что составляет 13 масс Юпитера) не разогреваются даже до этого порога и поэтому не способны ни к каким термоядерным реакциям. Как подчеркнул профессор Калифорнийского университета в Сан-Диего Адам Бургассер, многие астрономы полагают, что именно здесь и проходит граница между коричневым карликом и планетой. По мнению представителей другого лагеря, коричневым карликом можно считать и газовый сгусток полегче, если он возник в результате коллапса первичного облака космического газа, а не родился из газо-пылевого диска, окружающего только что вспыхнувшую нормальную звезду. Впрочем, любые подобные определения — дело вкуса.

Еще одно уточнение связано с литием-7, который, как и дейтерий, образовался в первые минуты после Большого взрыва. Литий вступает в термоядерный синтез при несколько меньшем нагреве, нежели водород, и потому загорается, если масса протозвезды превышает 0,055−0,065 солнечной. Однако лития в космосе в 2500 раз меньше, чем дейтерия, и поэтому с энергетической точки зрения его вклад совершенно ничтожен.

Что у них внутри

Что же происходит в недрах протозвезды, если гравитационный коллапс не завершился термоядерным поджогом водорода, а электроны объединились вединую квантовую систему, так называемый вырожденный ферми-газ? Доля электронов в этом состоянии увеличивается постепенно, а не подскакивает за единый миг от нуля до 100%. Однако для простоты будем считать, что этот процесс уже завершен.

Принцип Паули утверждает, что два электрона, входящие в одну и ту же систему, не могут пребывать в одинаковом квантовом состоянии. В ферми-газе состояние электрона определяется его импульсом, положением и спином, который принимает всего два значения. Это означает, что в одном и том же месте может находиться не более пары электронов с одинаковыми импульсами (и, естественно, противоположными спинами). А поскольку в ходе гравитационного коллапса электроны пакуются во все уменьшающийся объем, они занимают состояния с возрастающими импульсами и, соответственно, энергиями. Значит, по мере сжатия протозвезды растет внутренняя энергия электронного газа. Эта энергия определяется чисто квантовыми эффектами и не связана с тепловым движением, поэтому в первом приближении не зависит от температуры (в отличие от энергии классического идеального газа, законы которого изучают в школьном курсе физики). Более того, при достаточно высокой степени сжатия энергия ферми-газа многократно превосходит тепловую энергию хаотического движения электронов и атомных ядер.

Увеличение энергии электронного газа повышает и его давление, которое также не зависит от температуры и растет куда сильнее давления теплового. Именно оно противостоит тяготению вещества протозвезды и прекращает ее гравитационный коллапс. Если это произошло до достижения температуры поджога водорода, коричневый карлик остывает сразу же после непродолжительного по космическим масштабам выгорания дейтерия. Если прото-звезда пребывает в пограничной зоне и имеет массу 0,07−0,075 солнечной, она еще миллиарды лет сжигает водород, но на ее финал это не влияет. В конце концов квантовое давление вырожденного электронного газа столь снижает температуру звездного ядра, что горение водорода останавливается. И хотя его запасов хватило бы на десятки миллиардов лет, поджечь их коричневый карлик уже больше не сможет. Этим-то он и отличается от самого легкого красного карлика, выключающего ядерную топку, лишь когда весь водород превратился в гелий.

Все известные звезды на диаграмме Герцшпрунга-Рассела распределены не равномерно, а объединяются в несколько спектральных классов с учетом светимости (Йеркская классификация, или МКК, по фамилиям разработавших ее астрономов из Йеркской обсерватории — Уильяма Моргана, Филиппа Кинана и Эдит Келлман). Современная классификация выделяет на диаграмме Герцшпрунга-Рассела восемь таких основных групп. Класс 0 — это гипергиганты, массивные и очень яркие звезды, превышающие Солнце по массе в 100−200 раз, а по светимости — в миллионы и десятки миллионов. Класс Ia и Ib — это сверхгиганты, в десятки раз массивнее Солнца и в десятки тысяч раз превосходящие его по светимости. Класс II — яркие гиганты, занимающие промежуточное положение между сверхгигантами и гигантами, которые относятся к классу III. Класс V — это т.н. главная последовательность (карлики), на которой лежит большинство звезд, в том числе и наше Солнце. Когда звезда главной последовательности исчерпает свой запас водорода и в ее ядре начнется горение гелия, она станет субгигантом, которые относятся к классу IV. Чуть ниже главной последовательности лежит класс VI — субкарлики. А к классу VII относятся компактные белые карлики, конечная стадия эволюции звезд, не превышающих по массе предел Чандрасекара.

Профессор Барроуз отмечает и еще одно различие звезды и коричневого карлика. Обычная звезда не только не остывает, теряя лучистую энергию, но, как это ни парадоксально, нагревается. Это происходит потому, что звезда сжимает и разогревает свое ядро, а это сильно увеличивает темпы термоядерного горения (так, за время существования нашего Солнца его светимость возросла по крайней мере на четверть). Иное дело коричневый карлик, сжатию которого препятствует квантовое давление электронного газа. Вследствие излучения с поверхности он остывает, подобно камню или куску металла, хотя и состоит из горячей плазмы, как нормальная звезда.

Долгие поиски

Погоня за коричневыми карликами затянулась надолго. Даже у наиболее массивных представителей этого семейства, которые в юности испускают пурпурное свечение, температура поверхности обычно не превышает 2000 К, а у тех, что полегче и постарше, порой не достигает даже 1000 К. В излучении этих объектов присутствует и оптическая компонента, хоть и очень слабенькая. Поэтому для их поиска лучше всего подходит инфракрасная аппаратура высокого разрешения, которая появилась только в 1980-х годах. Тогда же начали запускать инфракрасные космические телескопы, без которых почти невозможно обнаружить холодные коричневые карлики (пик их излучения приходится на волны длиной 3−5 микрометров, которые в основном задерживаются земной атмосферой).

Именно в эти годы появились сообщения о возможных кандидатах. Поначалу такие заявления не выдерживали проверки, и реальное открытие первой из предсказанных Шивом Кумаром псевдозвезд состоялось лишь в 1995 году. Пальма первенства здесь принадлежит группе астрономов, возглавляемой профессором Калифорнийского университета в Беркли Гибором Басри. Исследователи изучали чрезвычайно тусклый объект PPl 15 в удаленном примерно на 400 световых лет звездном скоплении Плеяды, который ранее обнаружила группа гарвардского астронома Джона Стауффера. По предварительным данным, масса этого небесного тела составляла 0,06 массы Солнца, и он вполне мог оказаться коричневым карликом. Однако эта оценка была весьма приблизительной, и на нее нельзя было полагаться. Профессор Басри и его коллеги смогли решить эту задачу с помощью литиевой пробы, которую незадолго до того придумал испанский астрофизик Рафаэль Реболо.

«Наша группа работала на первом 10-метровом телескопе гавайской обсерватории имени Кека, который вступил в действие в 1993 году, — вспоминает профессор Басри. — Мы решили воспользоваться литиевой пробой, поскольку она давала возможность различить коричневые карлики и близкие к ним по массе красные карлики. Красные карлики очень быстро сжигают литий-7, а почти все коричневые карлики к этому не способны. Тогда считали, что возраст Плеяд составляет около 70 млн лет, и даже легчайшие красные карлики за это время должны были полностью избавиться от лития. Если бы мы нашли литий вспектре PPl 15, то имели бы все основания утверждать, что имеем дело с коричневым карликом. Задача оказалась непростой. Первый спектрографический тест вноябре 1994 года действительно выявил литий, а вот второй, контрольный, в марте 1995-го, этого не подтвердил. Естественно, мы пребывали в разочаровании — открытие ускользало прямо из рук. Однако первоначальное заключение было правильным. PPl 15 оказался парой коричневых карликов, обращающихся вокруг общего центра масс всего за шесть суток. Поэтому-то спектральные линии лития то сливались, то расходились — вот мы и не увидели их в ходе второго теста. Попутно мы обнаружили, что Плеяды старше, нежели считалось ранее».

В этом же 1995 году появились сообщения об открытии еще двух коричневых карликов. Рафаэль Реболо и его коллеги по Астрофизическому институту Канарских островов обнаружили в Плеядах карлик Teide 1, который был также идентифицирован с помощью литиевого метода. А в самом конце 1995 года исследователи из Калифорнийского Технологического института и университета Джонса Хопкинса сообщили, что красный карлик Gliese 229, который находится всего в 19 световых годах от Солнечной системы, обладает компаньоном. Этот спутник в 20 раз тяжелее Юпитера, и в его спектре имеются линии метана. Молекулы метана разрушаются, если температура превышает 1500К, в то время как атмосферная температура наиболее холодных нормальных звезд всегда больше 1700К. Это позволило признать Gliese 229-B коричневым карликом, даже не используя литиевый тест. Сейчас уже известно, что его поверхность нагрета всего до 950 К, так что этот карлик очень даже холодный.

Астрономы постоянно узнают о коричневых карликах что-то новое. Так, в конце ноября 2010 года ученые из Чили, Англии и Канады сообщили об открытии в созвездии Девы всего в 160 световых годах от Солнца звездной пары из двух карликов разных цветовых категорий — белого и коричневого. Последний принадлежит к числу самых горячих карликов Т-класса (его атмосфера нагрета до 1300 К) и по массе равен 70 Юпитерам. Оба небесных тела гравитационно связаны, несмотря на то, что их разделяет огромная дистанция — примерно 1 световой год. Звездную пару коричневых карликов астрономы наблюдали с помощью телескопа UKIRT (United Kingdom Infrared Telescope) с 3,8-метровым зеркалом. Этот телескоп, расположенный рядом с вершиной Мауна-Кеа на Гавайях на высоте 4200 м над уровнем океана — один из крупнейших в мире инструментов, работающих в инфракрасном диапазоне.

L-карлики, E-карлики — что дальше?

В настоящее время коричневых карликов известно вдвое больше, чем экзопланет, — примерно 1000 против 500. Исследование этих тел заставило ученых расширить классификацию звезд и звездоподобных объектов, поскольку прежняя оказалась недостаточной.

Астрономы издавна подразделяют звезды на группы в соответствии со спектральными характеристиками излучения, которые, в свою очередь, прежде всего определяются температурой атмосферы. Сейчас в основном применяется система, основы которой более ста лет назад были заложены сотрудниками обсерватории Гарвардского университета. В ее простейшей версии звезды делятся на семь классов, обозначаемых латинскими буквами O, B, A, F, G, K и M. В класс O входят чрезвычайно массивные голубые звезды с температурой поверхности выше 33 000К, в то время как к классу M относят красные карлики, красные гиганты и даже ряд красных сверхгигантов, атмосфера которых нагрета менее чем до 3700 К. Каждый класс в свою очередь делится на десять подклассов — от самого горячего нулевого до самого холодного девятого. К примеру, наше Солнце принадлежит классу G2. У гарвардской системы есть и более сложные варианты (так, в последнее время белые карлики выделяют в особый класс D), но это уже тонкости.

Открытие коричневых карликов обернулось введением новых спектральных классов L и T. К классу L относят объекты с температурами поверхности от 1300 до 2000К. Среди них не только коричневые карлики, но и наиболее тусклые красные карлики, которые раньше относили к M-классу. Класс Т включает лишь одни коричневые карлики, атмосферы которых нагреты от 700 до 1300 K. В их спектрах в изобилии присутствуют линии метана, поэтому эти тела нередко называют метановыми карликами (именно таков Gliese 229 B).

«К концу 1990-х годов мы накопили немало информации о спектрах самых тусклых звезд, в том числе и коричневых карликов, — рассказывает «ПМ» астроном из Калтеха Дэви Киркпатрик, входящий в группу ученых, по инициативе которых были введены новые классы. — Оказалось, что они обладают рядом особенностей, не встречавшихся ранее. Типичные для красных М-карликов спектральные метки оксидов ванадия и титана исчезли, зато появились линии щелочных металлов — натрия, калия, рубидия и цезия. Поэтому мы решили, что гарвардскую классификацию надо расширить. Сначала был добавлен класс L, эту букву предложил именно я — просто потому, что за ней ничего еще не числилось. Однако Gliese 229 B из-за наличия метана классу L не соответствовал. Пришлось задействовать еще одну свободную букву — T, так появился T-класс».

Скорее всего, дело этим не закончится. Уже предложено ввести класс y, который резервируется для гипотетических ультрахолодных коричневых карликов, нагретых ниже 600к. Их спектры также должны иметь характерные особенности, такие как четкие линии поглощения аммиака (а при температурах менее 400 к появятся и пары воды). Поскольку все коричневые карлики обречены на остывание, тела y-класса обязаны существовать, хотя до сих пор не обнаружены. Не исключено, что их откроют после запуска гигантского инфракрасного телескопа james webb, который отправится в космос в 2014 году. Быть может, эта обсерватория даже найдет у коричневых карликов планеты, существование которых в принципе вполне допустимо. Впереди астрономов ждет еще немало интересного.

Статья «Темные светила» опубликована в журнале «Популярная механика» (№1, Январь 2011).

Объекты глубокого космоса > Звезды > Коричневые карлики

Коричневый карлик ISO-Oph 102 в молекулярном облаке Ро Змееносца

Узнайте, что такое коричневые карлики: описание типа звезды с фото, есть ли в Солнечной системе, масса, промежуточный этап между звездами и газовыми гигантами.

Мы уже знаем, что все звезды формируются из молекулярных облаков. Но бывает так, что разрушенное облако просто не может создать привычный нам объект и появляется коричневый карлик. Такие звезды обладают теми же элементами, но их температура и давление находятся на низком уровне и не в состоянии запустить ядерный синтез, поэтому получили прозвище «Коричневые звезды».

Непредвиденная проблема в изучение коричневых карликов

Эти небесные тела разделяют стартовую точку с остальными звездами на небе, но им не суждено достигнуть главной стадии. Еще до того, как температура успеет подняться к необходимой отметке плотный материал застынет и не сможет больше трансформироваться.

Коричневые карлики считаются пробелом между газовыми гигантами (Юпитер) и красными карликами.

Особенности и классификация коричневых карликов

Все коричневые карлики отличаются по массе и температуре. Могут достигать 13-90 масс Юпитера (примерно 1/10 солнечной). Классификация строится на спектральном типе или на излучаемой энергии.

М – это не только наиболее красные звезды во Вселенной, но и самые распространенные. Большинство из них превращаются в красных карликов, но некоторые становятся коричневыми. Классы L и T отличаются по элементам, наблюдаемым в спектрах. Y-карлики – самый холодные. Некоторые достигают температуры человеческого организма.

Из-за того, что коричневые карлики выделяют мало света и энергии, их сложно обнаружить. До 1980-х годов вообще считались теоретическими объектами. Но технологии набирали чувствительность и смогли наконец их увидеть.

С самого начала их называли «черными». Но сейчас этот термин используют для обозначения финальной стадии развития звезды главной последовательности и представляет белый карлик, полностью истративший все тепло.

Красные круги – обнаруженные коричневые карлики в объективе WISE

Почему коричневые карлики не считаются планетами?

Из-за небольшой массы коричневые карлики можно спутать с массивными планетами. На это же намекает и отсутствие слияния. У них также есть атмосфера, сияния, облака и даже штормы. Подобно другим звездам, они могут располагать планетами.

Отличие в том, что коричневые карлики продолжают излучать свет, но это рентгеновские лучи и инфракрасный свет. Они вырабатывают их, пока тело не остынет. Поэтому лучше всего искать в инфракрасном диапазоне. Обычно расположены в пределах 100 световых лет.

Но черта между коричневым карликом и планетой тонкая. Некоторые из них настолько холодные, что им удается поддержать атмосферу, как это делают газовые гиганты. Карлик может приютить планеты, а газовый гигант – спутники. Как же точно определить границу?

Международный астрономический союз постановил, что объекты, чья масса меньше 13 масс Юпитера, считаются планетами. Но коричневые карлики вписываются в этот диапазон, поэтому могут быть одновременно и тем, и другим. Как известно, что в Солнечной системе коричневые карлики не наблюдаются и мы располагаем лишь одной звездой — Солнцем.

В чём разница между коричневым карликом и звездой?

Коричневый карлик с облачной атмосферой в представлении художника. Авторы и права: NASA / JPL-Caltech.

В то время как самые яркие звёзды достаточно легко обнаружить, их холодных братьев запросто можно спутать с планетами, которым не удалось достичь звёздного статуса.

Учёные часто обозначают звёзды различными цветами, и холодные объекты в данной классификации имеют красный цвет. К таким объектам относятся красные карлики (ультрахолодные звёзды) и коричневые карлики (субзвёздные объекты). Хотя термин “красный карлик” часто используется, для описания тусклых звёзд, известных как звёзды М-типа, он не имеет официального определения.

“Красные карлики – это объединённое название, как для холодных звёзд, так и для субзвёздных объектов”, – сказал Адам Бургассер (Adam Burgasser), сотрудник Калифорнийского Университета, занимающийся изучением маломассивных объектов.

Первоначальные наблюдения тусклых звёзд позволяют выделить только их цвет, или спектр. Дальнейшие наблюдения могут предоставить данные о том протекают ли внутри данных объектов термоядерные реакции.

“По спектру объекта, мы можем понять, что перед нами красный карлик. Для того чтобы различать звёзды и коричневые карлики, нам необходимы дополнительные данные”, – отметил Бургассер.

Коричневые карлики часто называют “неудавшимися звёздами”, потому что их относительно небольшая масса не позволяет протекать в их недрах термоядерным реакциям. С другой стороны, когда объект достаточно массивен, в нём начинаются реакции синтеза, однако они не столь мощные как в нормальных звёздах и сам объект является довольно тусклым.

Такие объекты – ультрахолодные звёзды – набирают лишь около 7 процентов от массы Солнца. На самом деле, как коричневые карлики, так и ультрахолодные звёзды больше напоминают сильно раздутый Юпитер, чем Солнце. По словам Майкла Джиллона (Michael Gillon), научного сотрудника Университета Льежа (Бельгия), для того чтобы коричневый карлик стал ультрахолодной звездой его масса должна превысить 80 масс Юпитера.

Концепция художника о экзопланете, вращающейся вокруг красного карлика – самого распространённого типа звёзд в нашей галактике. Авторы и права: NASA / ESA / G. Bacon.

Наиболее простым способом отличить ультрахолодную звезду от коричневого карлика является измерение температуры. Объекты холоднее, чем 1700 C (3000 F) – это коричневые карлики, а объекты, температура которых выше 2400 C (4400 F) – это уже звёзды. Без возможности определить температуру объекта исследователи в своих выводах должны исходить из его состава. Молекулы, такие как метан или аммиак могут существовать только в объектах более холодных, чем звёзды, так что, если рассматриваемый объект содержит эти молекулы, то он может быть классифицирован как коричневый карлик.

Когда объект попадает на границу между данными температурами, учёные дополнительно должны изучить его атмосферу. Звёзды очень быстро исчерпывают свои запасы лития, в то время как в атмосфере коричневых карликов этого элемента довольно много.

Возраст также может помочь, при идентификации объекта. Если объект является частью молодого кластера или компаньоном более массивной звезды с известным возрастом, то эволюционные модели могут рассказать о его массе.

КОРИЧНЕВЫЕ КАРЛИКИ

КОРИЧНЕВЫЕ КАРЛИКИ, космические тела, занимающие по своим массам промежуточное положение между звездами и планетами. Коричневыми карликами принято называть объекты с массами приблизительно от 0,01 до 0,08 масс Солнца. От нормальных звезд они отличаются тем, что температура в их недрах никогда не достигает значений, необходимых для протекания важнейшей термоядерной реакции – превращения водорода в гелий, которая обеспечивает длительное свечение обычных звезд. Но по сравнению с планетами, вообще не способными к термоядерному синтезу, коричневые карлики на начальном этапе своей жизни все же разогреваются настолько, что «сжигают» в термоядерных реакциях некоторые редкие элементы (дейтерий, литий), что делает их на короткое время похожими на звезды. Температура поверхности коричневых карликов обычно не превышает 2000 К, поэтому они имеют темно-красный или даже инфракрасный цвет; отсюда и название этих объектов (англ. brown dwarf).

Предсказание и обнаружение коричневых карликов.

Обычные звезды проводят большую часть своей жизни в состоянии равновесия между силой тяжести, стремящейся их сжать, и препятствующей этому силой газового давления. Высокое давление в недрах звезды обеспечивается огромной температурой плазмы в миллионы и даже десятки миллионов кельвинов, которую поддерживают постоянно идущие в центральной части звезды термоядерные реакции, т.е. реакции синтеза ядер более тяжелых химических элементов из более легких, например гелия из водорода, углерода из гелия и т.п. В этих реакциях выделяется ровно столько энергии, сколько звезда постоянно теряет с поверхности в виде излучения. Чем меньше масса звезды, тем ниже температура в ее ядре и тем медленнее протекают там термоядерные реакции. В 1958 астрофизик индийского происхождения Шив Кумар (университет штата Виргиния, США) занялся теоретическим изучением маломассивных звезд, предположив, что могут существовать звездообразные тела настолько малой массы, что температура в их недрах окажется недостаточной для протекания ядерного синтеза. Дело в том, что в период формирования звезды ее гравитационное сжатие обычно продолжается до тех пор, пока температура в центре не достигнет уровня, необходимого для протекания термоядерных реакций. У массивных звезд эта температура достигается при относительно невысокой плотности вещества, у звезд малой массы – при более высокой (например, в центре Солнца плотность плазмы превышает 100 граммов на кубический сантиметр). В 1963 расчеты Кумара показали, что у формирующихся звезд (протозвезд) очень малой массы сжатие останавливается раньше, чем температура в их центре достигает значения, необходимого для важнейшей термоядерной реакций – синтеза гелия из водорода (4H ® He). Причиной остановки сжатия протозвезды служит квантовомеханический эффект – давление вырожденного электронного газа. Таким образом, при массе звезды менее 0,07–0,08 массы Солнца (точное значение зависит от ее химического состава) она не способна сжигать легкий изотоп водорода, а значит в ее жизни нет фазы главной последовательности – самого длительного этапа эволюции нормальных звезд. Поэтому такие объекты, вообще говоря, нельзя называть звездами. Но с другой стороны, это и не планеты, поскольку в эволюции объекта с массой более 0,013 массы Солнца, как показывают расчеты, должна быть короткая термоядерная стадия, в ходе которой сгорает редкий тяжелый изотоп водорода – дейтерий, превращаясь в легкий изотоп гелия (D + p ® He). Этот краткий эпизод термоядерного горения не задерживает надолго гравитационное сжатие протозвезды. Температура ее поверхности даже при максимальном разогреве не превышает 2800 К, а затем начинает снижаться, и объект практически перестает светиться.

Итак, согласно теоретическому предсказанию Кумара, протозвезды с массой от 0,013 до приблизительно 0,075 массы Солнца в конце своего гравитационного сжатия проявляют робкую попытку стать звездой, но так ею и не становятся; их краткая жизнь заканчивается остыванием и полным исчезновением с небосвода. Такие звезды-неудачники, открытые «на кончике пера», Кумар назвал «черными карликами», но обнаружить их долго не удавалось и новый термин забылся. В середине 1970-х годов астрономы выяснили, что помимо наблюдаемых в телескоп нормальных ярких звезд в нашей и других галактиках присутствует огромное количество невидимого вещества; подозрение пало на тусклые карликовые объекты, предсказанные Кумаром, и они вновь стали популярны. Крис Дэвидсон (университет штата Миннесота, США) назвал эти неведомые звезды «инфракрасными карликами»; другие астрономы хотели назвать их «малиновыми карликами», но в 1975 студентка-дипломница из университета в Беркли (США) Джил Тартер придумала термин «brown dwarf», и он прижился. На русский язык его перевели как «коричневый карлик», хотя в действительности эти объекты имеют инфракрасный цвет, и точнее было бы перевести brown как «темный» или «тусклый». Но термин уже вошел в нашу научную литературу, и, вероятно, навсегда за группой промежуточных между звездами и планетами объектов закрепилось название «коричневые карлики».

Три десятилетия продолжались безрезультатные поиски этих тусклых светил. Их первое надежное обнаружение состоялось лишь после того, как были созданы новые гигантские телескопы диаметром 8–10 метров, снабженные инфракрасными приемниками изображения (ПЗС-матрицами большого размера) и мощными ИК-спектрографами, рассчитанными именно на тот диапазон излучения, в котором должны светиться коричневые карлики. Но даже такая мощная техника способна обнаружить эти слабые источники лишь на расстоянии не более 100 пк (300 св. лет) от Солнца, а в таком сравнительно небольшом объеме пространства их довольно мало. Чтобы выявить несколько коричневых карликов, пришлось провести детальный обзор всего неба. Некоторые из них обнаружились в соседнем молодом звездном скоплении Плеяды.

Первый успех пришел в 1996, когда японские астрономы (Накаджима и др.) обнаружили рядом с очень маленькой и холодной звездой Gliese 229 еще более мелкий и холодный спутник с температурой поверхности всего около 1000 К и мощностью излучения в 160 тыс. раз слабее солнечной. Его незвездная природа была окончательно подтверждена в 1997 с помощью «литиевого теста» (см. ниже); обозначенный как Gliese 229В, этот объект стал первым коричневым карликом, открытым астрономами. Его размер почти в точности равен размеру Юпитера, а масса оценивается в 0,03–0,06 масс Солнца. Коричневый карлик Gliese 229B обращается вокруг своего более массивного компаньона Gliese 229A по орбите радиусом около 40 а.е. с периодом около 200 лет. В 1997 были открыты два первых изолированных коричневых карлика (Kelu-1 и DENIS-PJ1228-1547), а также было доказано, что коричневым карликом является объект GD 165B, компаньон белого карлика. Эти четыре и стали прототипами нового класса астрономических объектов, занявших место между звездами и планетами.

Строение и эволюция коричневых карликов.

До середины 1990-х годов граница между звездами и планетами представлялась вполне определенной. Наиболее массивной планетой считался Юпитер, масса которого составляет всего 0,001 массы Солнца, а наименьшие среди известных звезд были значительно крупнее: они имели массу около 0,1 солнечной. Однако за последние годы были обнаружены экзопланеты во много раз массивнее Юпитера и близкие к ним по массе мини-звезды. Это потребовало точного определения понятий «звезда» и «планета» на основе физических различий в их эволюции. Поскольку характерным признаком звезды служат протекающие в ее недрах термоядерные реакции, именно их отсутствие было положено в основу определения планеты. Согласно Б.Р.Оппенгеймеру и др. (2000), планета – это объект, в котором за всю его историю реакции ядерного синтеза не происходят ни в каком виде. Если же на каком-либо этапе эволюции мощность термоядерного синтеза была сравнима со светимостью объекта, то он достоин называться звездой. Расчеты показывают, что в звездах с массой менее 0,07–0,08 массы Солнца температура так низка, что термоядерные реакции с участием легкого изотопа водорода (т.е. реакции pp-цикла) практически не происходят. Это критическое значение массы звезды называют «границей возгорания водорода», или «пределом Кумара». Единственным долговременным источником энергии менее массивных звезд служит их гравитационное сжатие. Однако в процессе этого сжатия каждая протозвезда проходит короткий этап горения дейтерия. Этот тяжелый изотоп водорода вступает в термоядерную реакцию при более низкой температуре, чем легкий водород, потому что реакция с дейтерием происходит под действием электромагнитного, а не слабого взаимодействия. Необходимые для этой реакции условия возникают в звездах с массой более 0,013 солнечной (что всего в 14 раз больше массы Юпитера). Но содержание дейтерия в космическом газе ничтожно (0,001%), сгорает он быстро и слабо влияет на светимость звезды; основным источником ее энергии в этот период все равно остается гравитационное сжатие.

Звезды наименьшей массы, обладающие ядерным источником энергии, очень экономно расходуют запас водорода: например, звезда с массой 0,085 солнечной может поддерживать свою невысокую светимость (около 0,1% от солнечной) в течение 6000 млрд. лет, что в 400 раз больше нынешнего возраста Вселенной. Но коричневые карлики с массой чуть ниже предела Кумара практически лишены ядерной энергии; после быстрого сгорания дейтерия и остановки гравитационного сжатия они быстро остывают и становятся невидимыми всего за несколько миллиардов лет. Поэтому в Галактике может быть много холодных и совершенно невидимых коричневых карликов, которые могли бы составлять немалую долю ее скрытой массы.

Отличить молодой, еще не остывший коричневый карлик от маленькой звезды довольно сложно: их цвет и светимость весьма близки. Критическим признаком при этом сейчас считается «литиевый тест» – наличие линий лития в спектре источника. Дело в том, что литий – нежный элемент: он разрушается ядерными реакциями при температуре выше 2,4 млн. К. Поэтому все нормальные звезды должны сжечь свой литий еще до начала реакций с участием водорода, причем сжечь не только в ядре, но во всем объеме звезды, включая поверхностные слои. Причина в том, что маломассивные звезды и коричневые карлики полностью конвективны: их вещество активно перемешивается («кипит») и поэтому каждая его порция рано или поздно проходит через ядро, где при высокой температуре литий сгорает без остатка. Расчеты показывают, что звезда минимальной массы (0,075 массы Солнца) сжигает 99% своего лития за 100 млн. лет, а коричневый карлик с массой ниже 0,06 солнечной сожжет такую же долю лития лишь за время больше 10 млрд. лет. Этим и обоснован литиевый тест: обнаружение в спектре холодной звезды линии Li с длиной волны 6708 ангстрем сразу указывает, что ее масса меньше 0,06 солнечной, а значит – это коричневый карлик.

Как мы знаем, температура поверхности коричневых карликов никогда не превышает 2800 К. Для таких холодных объектов в спектральную классификацию звезд потребовалось ввести новые классы. Принятая сейчас классификация звездных спектров сложилась в первой половине 20 в. Известная гарвардская последовательность спектральных классов O-B-A-F-G-K-M отражает ход температуры звездных фотосфер (от горячих O и B к прохладным К и М), а дополнительные классы R, N и S отражают вариации химического состава у холодных звезд-гигантов с температурой около 3000 К. Эта схема надежно служила астрономам почти целый век, и даже создалось впечатление ее завершенности. Однако последние годы показали, что развитие спектральной классификации не прекратилось: обнаружение коричневых карликов привело в конце 1990-х годов к введению новых спектральных классов L и T для тел с эффективной температурой менее 2000 К.

Оказалось, что в формировании спектров экстремально холодных объектов весьма важную роль играет пыль. У самых холодных звезд класса М с температурой поверхности около 3000 К в спектре видны мощные полосы поглощения окисей титана и ванадия (TiO, VO). Но у более холодных звезд их не оказалось. До открытия ставшего теперь классическим коричневого карлика Gliese 229В самым темным и холодным был компаньон белого карлика GD 165B, имеющий температуру поверхности 1900 К и светимость 0,01% солнечной. Он поразил исследователей тем, что в отличие от других холодных звезд не имеет полос поглощения TiO и VO, за что был прозван «странной звездой». Такими же оказались спектры и других коричневых карликов с температурой ниже 2000 К. Расчеты показали, что молекулы TiO и VO в их атмосферах сконденсировались в твердые частицы – пылинки и уже не проявляют себя в спектре, как это свойственно молекулам газа.

Таким образом, подавление спектральных полос TiO и VO в результате конденсирования этих молекул в пылинки при T

Продолжая поиск и исследование L-карликов, астрономы обнаружили еще более экзотические объекты, для которых потребовалось ввести самый новый спектральный класс T, еще более холодный, чем L (Дж.Либерт и др., 2000). Эффективная температура T-карликов около 1500–1000 К и даже чуть ниже. В их спектрах видны мощные полосы поглощения воды, метана и молекулярного водорода, поэтому их называют «метановыми карликами». Прототипом этого класса считают коричневый карлик Gliese 229B.

Коричневые карлики ставят перед астрономами много сложных и очень интересных проблем. Чем холоднее атмосфера звезды, тем сложнее ее изучать как наблюдателям, так и теоретикам. Присутствие в атмосфере пыли не делает эту задачу легче: конденсация твердых частиц не только изменяет состав свободных химических элементов в атмосфере, но и влияет на теплообмен и форму спектра. Теоретические модели с учетом пыли предсказали парниковый эффект в верхних слоях атмосферы и уменьшение глубины молекулярных полос поглощения; эти эффекты подтверждаются наблюдениями. Но проблема пыли сложна: расчеты показывают, что после конденсации пылинки начинают тонуть. Возможно, на разных уровнях в атмосфере формируются плотные облака пыли. Метеорология коричневых карликов может оказаться не менее разнообразной, чем у планет-гигантов. Но если атмосферы планет удается изучать с близкого расстояния, то расшифровывать метановые циклоны и пылевые бури коричневых карликов придется только по их спектрам.

Вопросы о происхождении и численности коричневых карликов пока остаются открытыми. Первые подсчеты их количества в молодых звездных скоплениях типа Плеяд показывают, что по сравнению с нормальными звездами общая масса коричневых карликов, видимо, не так велика, чтобы «списать» на них всю темную массу Галактики. Но этот вывод еще нуждается в проверке.

Другой важный вопрос – как формируются коричневые карлики. Общепринятая теория происхождения звезд не дает на него ответ. Объекты столь малой массы могли бы формироваться подобно планетам-гигантам в околозвездных дисках. Но обнаружено довольно много одиночных коричневых карликов (например, в Туманности Ориона); трудно предположить, что все они сразу после рождения были потеряны своими более массивными компаньонами.

В 2001 совершенно особый путь рождения коричневых карликов наметился при исследовании двух тесных двойных систем – LL Андромеды и EF Эридана. В них более массивный компаньон – белый карлик – своим тяготением стягивает вещество с менее массивного спутника, так называемой звезды-донора. В системе LL Андромеды перетекающий на белый карлик газ образует аккреционный диск, в котором время от времени, раз в несколько лет, происходят вспышки; поэтому LL Андромеды относят к классу неправильных переменных звезд, называемых карликовыми новыми. Систему EF Эридана относят к классу поляров: в ней сильное магнитное поле белого карлика препятствует образованию аккреционного диска, поэтому вещество донора течет вдоль силовых синий и падает на магнитные полюса белого карлика.

Расчеты показывают, что в начале эволюции обеих этих систем спутники-доноры в них были обычными звездами, но за несколько миллиардов лет их масса упала ниже предельного значения, и термоядерные реакции в этих звездах угасли. Теперь это по внешним признакам типичные коричневые карлики. Температура звезды-донора в системе LL Андромеды около 1300 К, а в системе EF Эридана – около 1650 К. Их массы лишь в несколько десятков раз превосходят массу Юпитера, а в их спектрах видны линии метана. Насколько их внутренняя структура и химический состав сходны с аналогичными параметрами «настоящих» коричневых карликов, пока не известно. Таким образом, нормальная маломассивная звезда, потеряв значительную долю своего вещества, может стать коричневым карликом. В будущем этот новый тип космических объектов обещает немало интересных открытий.

Владимир Сурдин

Коричневый карлик

Коричневый карлик (меньший объект) вращающийся вокруг звезды Gliese 229, которая расположена в созвездии Зайца около 19 световых лет от Земли. Коричневый карлик Gliese 229B имеет массу от 20 до 75 масс Юпитера.

Кори́чневые или бу́рые ка́рлики («субзвёзды» или «химические звезды») — субзвёздные объекты (с массами в диапазоне 0,012-0,0767 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера). Так же как и в звёздах, в них идут термоядерные реакции, но в отличие от звёзд главной последовательности они не могут компенсировать потерю энергии на излучение и относительно быстро охлаждаются, со временем превращаясь в планетоподобные объекты. В коричневых карликах, в отличие от звёзд главной последовательности, также отсутствуют зоны лучистого переноса энергии — теплоперенос в них осуществляется только за счёт конвекции, что обуславливает однородность их химического состава по глубине.

История

Коричневые карлики были первоначально названы чёрными карликами, и классифицировались как тёмные субзвёздные объекты, свободно плавающие в космическом пространстве и имеющие слишком малую массу, чтобы поддерживать стабильную термоядерную реакцию. В настоящее время понятие чёрный карлик имеет совсем другое значение.

В ранних моделях строения звёзд считалось, что для протекания термоядерных реакций масса звезды должна быть хотя бы в 80 раз больше массы Юпитера (или 0,08 массы Солнца). Гипотеза о существовании плотных звездоподобных объектов с массой меньше указанной (коричневые карлики) была выдвинута в начале 60-х годов XX-го века. Считалось, что образование их протекает во многом подобно образованию обычных звёзд, но обнаружить их очень сложно, так как они практически не испускают видимого света. Наиболее сильное излучение коричневых карликов наблюдается в инфракрасном диапазоне.

Но на протяжении нескольких десятилетий наземные телескопы, работающие в этом диапазоне, имели слишком низкую чувствительность и, поэтому, были неспособны обнаружить коричневые карлики. Позднее было выдвинуто предположение, что в зависимости от компонентов, участвующих в формировании звезды, критическая масса, необходимая для протекания такого же как и в обычной звезде термоядерного синтеза гелия с участием водорода, составляет 75 масс Юпитера. Субзвёздные объекты, достаточно быстро сформировавшиеся сжатием туманности, могут иметь массу меньше 13 масс Юпитера. В них вообще исключено протекание каких-либо термоядерных реакций.

С 1995 года, когда было впервые подтверждено существование коричневого карлика, было найдено более сотни подобных объектов. Считается, что они составляют большинство космических объектов в Млечном Пути. Самые ближайшие из них к Земле — UGPS J072227.51-054031.2 в созвездии Единорога и компоненты кратной звезды ε Индейца Ba и Bb, пара карликов, расположенных на расстоянии 9,5 и 12 световых лет от Солнца соответственно.

В 2006 году удалось впервые непосредственно измерить массы двух коричневых карликов (в двойной системе), которые оказались равны 57 и 36 масс Юпитера.

Теория

Сравнительные размеры коричневых карликов Глизе 229B и Тейде 1 с Юпитером и Солнцем.

Различия между тяжёлыми коричневыми карликами и лёгкими звёздами

Литий: Коричневые карлики, в отличие от звёзд с малой массой, содержат литий. Это происходит из-за того, что звёзды, имеющие достаточную для термоядерных реакций температуру, быстро исчерпывают свои первоначальные запасы лития. При столкновении ядра лития-7 и свободного протона образуются два ядра гелия-4. Температура, необходимая для этой реакции, немного ниже, чем температура, при которой возможен термоядерный синтез с участием водорода. Конвекция в звёздах является причиной полного истощения запасов лития, который из холодных наружных слоёв постепенно попадает в горячие внутренние и там сгорает. Следовательно, наличие литиевых линий в спектрах кандидатов на коричневые карлики является хорошим признаком их субзвёздной структуры. Такой подход к различению коричневых карликов и звёзд с малой массой впервые был предложен Рафаэлем Реболо и его коллегами и получил название «литиевый тест».

  • В то же время, литий присутствует в составе очень молодых звёзд, не успевших ещё сжечь его. Более тяжёлые звёзды, такие как наше Солнце, содержат литий в верхних слоях атмосферы, которые слишком холодны для реакций с его участием. Но такие звёзды легко отличимы от коричневых карликов по размеру.
  • С другой стороны, тяжёлые коричневые карлики (порядка 65—80 ) способны истощить запасы лития в начальные периоды своей жизни, то есть примерно за полмиллиарда лет. Таким образом, «литиевый тест» не совершенен.

Метан: В отличие от звёзд, некоторые коричневые карлики на заключительном периоде своего существования достаточно холодны, чтобы за долгое время накопить в своей атмосфере обозримое количество метана. Примером может служить Gliese 229.

Яркость: Звёзды главной последовательности, остывая, в конечном итоге достигают минимальной яркости, которую они могут поддерживать стабильными термоядерными реакциями. Это значение яркости в среднем составляет минимум 0,01 % яркости Солнца. Коричневые карлики остывают и тускнеют постепенно на протяжении своего жизненного цикла. Достаточно старые карлики становятся слишком тусклыми, чтобы считаться звёздами.

Различия между малыми коричневыми карликами и большими планетами

Отличительным свойством коричневых карликов является то, что они имеют радиус, приблизительно равный радиусу Юпитера. В массивных коричневых карликах (60-80 ) определяющую роль, как и в белых карликах, играет давление вырожденного электронного газа (ферми-газа). Объём лёгких коричневых карликов (1-10 ) определяется действием закона Кулона. Результатом всего этого является то, что радиусы коричневых карликов различаются всего на 10-15 % для всего диапазона масс. Из-за этого отличить их от планет достаточно трудно.

Кроме того, многие коричневые карлики не способны поддерживать термоядерные реакции. Лёгкие (до 13 ) — слишком холодны и в них невозможны даже реакции с участием дейтерия, а тяжёлые (более 60 ) остывают слишком быстро (приблизительно за 10 миллионов лет) и тем самым теряют способность к термоядерному синтезу. Но всё же существуют способы отличить коричневый карлик от планеты:

  • Измерение плотности. Все коричневые карлики имеют приблизительно одинаковый радиус и объём. Следовательно, объект с массой более 10 скорее всего не является планетой.
  • Наличие рентгеновского и инфракрасного излучения. Некоторые коричневые карлики излучают в рентгеновском диапазоне. Все «тёплые» карлики излучают в красном и инфракрасном диапазонах, пока не остынут до температуры, сопоставимой с планетарной (до 1000 K).
Звезды, коричневые карлики и планеты: сравнительные характеристики

Тип объекта Масса () Термоядерный синтез Наличие
Li D
Красные карлики 0,1-0,075 Длительный Непродолжительный Нет Нет
Коричневые карлики 0,075-0,065 Непродолжительный Непродолжительный Есть Нет
Коричневые карлики 0,065-0,013 Нет Непродолжительный Есть Нет
Планеты < 0,013 Нет Нет Есть Есть

Происхождение

Один из механизмов происхождения коричневых карликов схож с планетарным. Коричневый карлик формируется в протопланетном диске на его окраине. На следующем этапе их жизни они под воздействием окружающих звёзд выбрасываются в окружающее пространство их родительской звезды и образуют большую популяцию самостоятельных объектов.

Практика

В отличие от звёзд главной последовательности, минимальная температура поверхности которых составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. В отличие от звёзд, которые сами себя разогревают за счёт внутреннего синтеза, коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Свойства коричневых карликов, переходных между планетами и звёздами по массам, вызывают особый интерес астрономов. Год спустя после открытия первого объекта этого класса в атмосферах коричневых карликов были обнаружены погодные явления. Выяснилось, что коричневые карлики также могут иметь собственные спутники.

Технологии наблюдения

Коронографы. Часто используются для обнаружения наиболее тусклых объектов на фоне ярких видимых звёзд, включая Gliese 229B.

Сенсорные телескопы, оснащённые ПЗС-матрицей, используются для поиска тусклых объектов в удалённых звёздных скоплениях, таких как Teide 1.

Широкопольные искатели позволяют обнаруживать одиночные тусклые объекты, такие как Kelu-1 (расстояние — 30 световых лет).

Основные вехи

  • 1995 год. Обнаружен первый коричневый карлик. Тейде 1, объект спектрального класса M8 в скоплении Плеяд, был идентифицирован с помощью ПЗС-камеры в Испанской обсерватории Roque de los Muchachos Астрофизического Института на Канарских островах.

Обнаружен первый метановый карлик Gliese 229B, вращающийся вокруг красного карлика Gliese 229A (20 световых лет от Солнца). Обнаружение было выполнено с использованием адаптивной (самонастраивающейся) оптики, позволяющей улучшить качество снимков, сделанных при помощи полутораметрового рефлектора в Паломарской обсерватории в южной Калифорнии. Последующая инфракрасная спектроскопия, выполненная 5-метровым телескопом Хейла, показала изобилие метана в составе карлика.

  • 1998 год. Обнаружен первый коричневый карлик, излучающий рентгеновские лучи. Cha Halpha 1, объект спектрального класса M8 в тёмном облаке Хамелеон I, классифицирован как источник рентгеновского излучения, схожий с конвективными звёздами позднего типа.
  • 15 декабря 1999 года. Зафиксирована первая вспышка коричневого карлика в рентгеновском диапазоне. Группа учёных Университета Калифорнии при помощи телескопа Чандра наблюдала 2-часовую вспышку объекта LP 944-20 (60 , 16 световых лет от Солнца).
  • 27 июля 2000 года. Зафиксировано первое излучение коричневого карлика в радиодиапазоне (дискретное и непрерывное). Наблюдения за объектом LP 944-20 производились группой студентов при помощи Очень большого массива радиотелескопов и их результаты были опубликованы в британском журнале Nature.

Последние достижения

Последние наблюдения за известными коричневыми карликами выявили некоторые закономерности в усилении и ослаблении излучения в инфракрасном диапазоне. Это наталкивает на мысль о том, что коричневые карлики затянуты относительно холодными, непрозрачными облаками, скрывающими горячую внутреннюю область. Считается, что эти облака находятся в постоянном движении из-за сильных ветров, гораздо более сильных, чем известные штормы на Юпитере.

Рентгеновские вспышки, зафиксированные в 1999 году свидетельствуют о наличии у коричневых карликов изменяющихся магнитных полей, схожих с магнитными полями лёгких звёзд.

В 2005 году в созвездии Хамелеона в регионе звёздообразования Chameleon I, были обнаружены коричневые карлики, у которых было подтверждено наличие аккреционного диска, что является характерным для молодых звёзд. При помощи данных космического телескопа Спицер, Хаббл и наземного телескопа в этом регионе обнаружен коричневый карлик Cha 110913-773444. Объект расположен на расстоянии в 500 световых лет от Солнца и может находиться в процессе формирования мини-солнечной системы. Астрономы из Университета Пенсильвании обнаружили нечто схожее с диском газа и пыли, сильно напоминающий протопланетный диск, из которого, как считается, образовалась наша Солнечная система. Cha 110913-773444 — самый маленький из известных на сегодняшний день коричневых карликов (8+7−3 ). Кроме того, если он на самом деле сформировал планетарную систему, то он будет самым маленьким известным объектом, имеющим подобную систему.

Очередной коричневый карлик был обнаружен в марте 2006 году группой астрономов с помощью телескопа Южно-европейской обсерватории. Объект был найден у звезды SCR, находящейся на расстоянии 12,7 световых лет. Неожиданно открытая звезда обращается вокруг ранее известной звезды на расстоянии, примерно в четыре раза превышающем расстояние от Земли до Солнца, и характеризуется рекордно низкой температурой поверхности — 750 градусов по Цельсию.

Спектральные классы коричневых карликов

Коричневые карлики, несмотря на то, что неспособны поддерживать термоядерные реакции в течение миллионов или миллиардов лет так, как это делают звёзды, в какой-то момент жизни всё же это делают. Температура поверхности коричневых карликов варьирует в зависимости от массы и возраста коричневого карлика от планетной до температуры звёзд нижнего класса класса M. Поэтому для коричневых карликов были выделены специальные спектральные классы: L и T. В качестве теории выделялся ещё более холодный спектральный класс Y, позднее были обнаружен ряд объектов, соответствующих этому классу. Спектральный класс коричневых карликов постепенно сдвигается в сторону более холодного: коричневые карлики остывают, причём чем более массивен коричневый карлик, тем медленнее он остывает.

Спектральный класс M

Массивные коричневые карлики, близкие к красным карликам, на ранних стадиях после формирования могут иметь спектральный класс, начиная с M6.5 и позднее. Постепенно, как правило, они остывают, переходя в класс L.

Спектральный класс L

Художественное изображение L-карлика.

Главной особенностью спектрального класса M, самого холодного спектрального класса звёзд главной последовательности, является наличие полос поглощения таких соединений, как оксид титана (II) и оксид ванадия (II). Тем не менее после обнаружения коричневого карлика GD 165B, который, в свою очередь, вращается вокруг белого карлика GD 165, было установлено, что спектр его не имеет в себе линий поглощения данных соединений. Последующие исследования спектра дали возможность выделить новый спектральный класс L. В плане спектральных линий он совсем не похож на M. В красном оптическом спектре линии оксидов титана и ванадия всё ещё были сильны, но также были и сильные линии гидридов металлов, например FeH, CrH, MgH, CaH. Также были сильные линии щелочных металлов и йода.

По данным на апрель 2005 года, было обнаружено уже свыше 400 карликов класса L.

Спектральный класс T

Художественное изображение T-карлика

GD 165B является прототипом L-карликов. Аналогично, коричневый карлик Глизе 229B является прототипом второго нового спектрального класса, который назвали T-карликом. В то время как в ближнем инфракрасном (БИК) диапазоне спектра L-карликов преобладают полосы поглощения воды и монооксида углерода (CO), в БИК-спектре Глизе 229B доминируют полосы метана (CH4). Подобные характеристики до этого вне Земли были обнаружены только у газовых гигантов Солнечной системы и спутника Сатурна Титана. В красной части спектра вместо полос FeH и CrH, характерных для L-карликов, наблюдаются спектры щелочных металлов — натрия и калия.

Эти различия позволили ввести отдельный спектральный класс T, в первую очередь на основе линий метана. Из-за наличия метана в составе звезды этот класс также называют иногда «метановыми карликами».

Согласно теории, L-карликами могут являться очень маломассивные звёзды и массивные коричневые карлики. T-карликами могут являться только сравнительно маломассивные коричневые карлики. Масса T-карлика обычно не превышает 7 % от массы Солнца или 70 масс Юпитера. По своим свойствам карлики класса T схожи с газовыми планетами-гигантами. Температура их поверхности составляет порядка 700—1300 К. На ноябрь 2010 года обнаружено порядка 200 коричневых карликов спектрального класса T.

Благодаря влиянию спектра молекулярных соединений и спектров натрия и калия, которые сильно выделяют также зелёную часть спектра T-карликов, наблюдатель бы увидел такой объект не бурым, а скорее розовато-синим.

В ноябре 2010 года была впервые обнаружена двойная система, содержащая «метановый карлик».

Спектральный класс Y

Художественное изображение Y-карлика.

Этот спектральный класс долгое время существовал только в теории. Он был смоделирован для ультра-холодных коричневых карликов. Температура поверхности коричневых карликов теоретически должна была быть ниже 700 K (или 400 °C), что делало такие коричневые карлики невидимыми в видимом диапазоне, а также существенно более холодными, чем такие планеты как «горячие юпитеры».

В 2011 году группа американских учёных заявила об обнаружении коричневого карлика с температурой поверхности 97±40 °C. Но данные о CFBDSIR 1458+10 B пока не напечатаны в рецензируемом журнале.

Другие холодные коричневые карлики: (CFBDS J005910.90-011401.3, ULAS J133553.45+113005.2 и ULAS J003402.77−005206.7) имеют температуру поверхности 500—600 К (200—300 °C) и относятся к спектральному классу Т9. Спектр их поглощения — на уровне длины волны в 1,55 мкм (инфракрасная область).

В августе 2011 года американские астрономы сообщили об открытии семи ультрахолодных коричневых карликов, эффективные температуры которых лежат в диапазоне 300—500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3. Из них только WISE J0148−7202, был отнесён к классу Т9.5, а остальные — Y классу. Температура WISE J1828+2650 ~ 25 °C, а коричневый карлик WISE 1541-2250, находящийся в 9 световых годах от Солнца (2,8+1,3−0,6 парсек), может отодвинуть красный карлик Ross 154 с седьмого на восьмое место в списке ближайших с Солнцу звёздных систем.

Основным критерием, который отделяет спектральный класс Т от Y, считается наличие полос поглощения аммиака в спектре. Однако сложно идентифицировать, есть ли там эти полосы или нет, так как поглощать могут также такие вещества как метан и вода.

Самые известные коричневые карлики

  • 2M1207 — первый из обнаруженных коричневых карликов
  • OTS 44 — самый маленький коричневый карлик, являющийся центром газопылевого облака (более лёгкие газовые объекты уже относятся к классу планемо или экзопланет).
  • WISE 1828+2650 — самый холодный из известных коричневых карликов. Его температура — всего 25 °C.

Образ в литературе

В романе «Туманность Андромеды» И.Ефремова земной корабль «Тантра» попадает на подобную систему всего в 2 световых годах от Солнца и встречает там нормально-агрессивную жизнь.

В романе Карла Шрёдера «Неизменность» (K. Schroeder, «Permanence») коричневый карлик использован как фон для научно-фантастического произведения.

В романе Айзека Азимова «Немезида» коричневый карлик Мегас входит в двойную систему красного карлика Немезиды и Мегаса. На спутнике Мегаса Эритро существует азотно-кислородная атмосфера и жизнь. Коричневый карлик излучает достаточно энергии в инфракрасном диапазоне, чтобы на планете, находящейся на низкой орбите, могла возникнуть жизнь.

В романе Питера Уоттса «Ложная слепота» блуждающий коричневый карлик «Большой Бен», находящийся за орбитой Плутона, является средой обитания для внеземной формы жизни, называющей себя «Роршах».

> См. также

  • Субкоричневый карлик
  • Планеты вне Солнечной системы
  • Планетар
  • Список коричневых карликов

Примечания

  1. David S. Spiegel; Adam Burrows & John A. Milsom (2010), «The Deuterium-Burning Mass Limit for Brown Dwarfs and Giant Planets», arΧiv:1008.5150v2 (англ.) — См. С. 2, 6.
  2. G. Chabrier; I. Baraffe; F. Allard & P.H. Hauschildt (2005), «Review on low-mass stars and brown dwarfs», arΧiv:astro-ph/0509798v1 (англ.) — См. С. 16. — Цитата: The distinction between BD and giant planets has become these days a topic of intense debate. In 2003, the IAU has adopted the deuterium-burning minimum mass, mDBMM ≃ 0.012M⊙ (Saumon et al. 1996, Chabrier et al. 2000b) as the official distinction between the two types of objects. Перевод: Различие между Коричневыми карликами и Планетами-гигантами стало в настоящее время темой интенсивных дебатов. В 2003 году МАС принял минимальную массу необходимую для горения (англ.)русск. дейтерия mDBMM ≃ 0,012M⊙ (Saumon et al. 1996, Chabrier et al. 2000b) как официальное значение для различия между двумя типами объектов.
  3. Burrows, A., Hubbard, W. B., Saumon, D., Lunine, J. I. An expanded set of brown dwarf and very low mass star models (англ.) // The Astrophysical Journal : рец. науч. журнал. — 1993. — Т. 406. — № 1. — С. 158-171. — ISSN 0004-637X. — DOI:10.1086/172427 — Bibcode: 1993ApJ…406..158B — См. С. 160.
  4. Fred C. Adams & Gregory Laughlin (U. Michigan) (1997), «A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects», arΧiv:astro-ph/9701131 (англ.) — См. С. 5.
  5. Ngoc Phan-Bao et al. First Confirmed Detection of a Bipolar Molecular Outflow from a Young Brown Dwarf (англ.) // The Astrophysical Journal : рец. науч. журнал. — 2008. — Т. 689. — № 2. — С. 1141–1144. — ISSN 0004-637X. — DOI:10.1086/595961. — arΧiv:0810.2588.
  6. Протозвёзды. Где, как и из чего формируются звёзды. Глава 12
  7. Александр Сергеев. Впервые измерена масса коричневого карлика (рус.). Элементы.ру (17 марта 2006). Архивировано из первоисточника 9 февраля 2012. Проверено 9 января 2012.
  8. КОРИЧНЕВЫЕ КАРЛИКИ
  9. Астрономия: век XXI / Ред.-сост. В.Г. Сурдин. — Фрязино: «Век 2», 2008. — С. 140. — ISBN 978-5-85099-181-4
  10. S. P. Goodwin, A. Whitworth. Brown dwarf formation by binary disruption (англ.) // Astronomy and Astrophysics : рец. науч. журнал. — 2007. — Т. 466. — № 3. — С. 943-948. — ISSN 0004-6361. — DOI:10.1051/0004-6361:20066745. — arΧiv:astro-ph/0703106.
  11. Dimitris Stamatellos, David A. Hubber, Anthony P. Whitworth. Brown dwarf formation by gravitational fragmentation of massive, extended protostellar discs (англ.) // Monthly Notices of the Royal Astronomical Society : рец. науч. журнал. — 2007. — Т. 382. — № 1. — С. L30-L34. — ISSN 0035-8711. — DOI:10.1111/j.1745-3933.2007.00383.x. — arΧiv:0708.2827.
  12. 1 2 K. L. Luhman, Paola D’Alessio, Nuria Calvet et al. Spitzer Identification of the Least Massive Known Brown Dwarf with a Circumstellar Disk (англ.) // The Astrophysical Journal : рец. науч. журнал. — 2005. — Т. 620. — № 1. — С. L51–L54. — ISSN 0004-637X. — DOI:10.1086/428613. — arΧiv:astro-ph/0502100.
  13. K. L. Luhman, Lucía Adame, Paola D’Alessio et al. Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk (англ.) // The Astrophysical Journal : рец. науч. журнал. — 2005. — Т. 635. — № 1. — С. L93–L96. — ISSN 0004-637X. — DOI:10.1086/498868. — arΧiv:astro-ph/0511807.
  14. Первые Y-карлики
  15. ТЕМНЫЕ СВЕТИЛА: КОРИЧНЕВЫЕ КАРЛИКИ
  16. 1 2 3 Астрономы впервые обнаружили пару из белого и «метанового» карликов (рус.), РИА Новости (23 ноября 2010). Проверено 24 ноября 2010.
  17. Adam Burrows, W. B. Hubbard, J. I. Lunine, James Liebert. The theory of brown dwarfs and extrasolar giant planets (Теория бурых карликов и экзопланет-гигатов) (англ.) // Reviews of Modern Physics : рец. науч. журнал. — 2001. — Т. 73. — № 3. — С. 719–765. — ISSN 0034-6861. — DOI:10.1103/RevModPhys.73.719. — arΧiv:astro-ph/0103383.
  18. Davy Kirkpatrick. An Artist’s View of Brown Dwarf Types (англ.). Калифорнийский технологический институт (26 June 2002). — Artist’s renditions by Dr. Robert Hurt of the Infrared Processing and Analysis Center. Архивировано из первоисточника 9 февраля 2012. Проверено 9 января 2012.
  19. N. R. Deacon, N. C. Hambly. The possiblity of detection of ultracool dwarfs with the UKIRT Infrared Deep Sky Survey (англ.) // Monthly Notices of the Royal Astronomical Society : рец. науч. журнал. — 2006. — Т. 371. — № 4. — С. 1722–1730. — ISSN 0035-8711. — DOI:10.1111/j.1365-2966.2006.10795.x. — arΧiv:astro-ph/0607305.
  20. Michael C. Liu et al. (2011), «CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System», arΧiv:1103.0014v2 (англ.)
  21. Юлия Рудый. Коричневый карлик установил рекорд температуры (рус.). Membrana.ru (11 марта 2011). Архивировано из первоисточника 9 февраля 2012. Проверено 9 января 2012.
  22. S. K. Leggett et al. The Physical Properties of Four ~600 K T Dwarfs (англ.) // The Astrophysical Journal : рец. науч. журнал. — 2009. — Т. 695. — № 2. — С. 1517–1526. — ISSN 0004-637X. — DOI:10.1088/0004-637X/695/2/1517
  23. Дмитрий Сафин. Найдено семь ультрахолодных коричневых карликов (рус.). Компьюлента (24 августа 2011). Проверено 9 января 2012.
  24. Whitney Clavin, Trent Perrotto. NASA’s Wise Mission Discovers Coolest Class of Stars (англ.). JPL (23 August 2011). Архивировано из первоисточника 9 февраля 2012. Проверено 9 января 2012.
  25. DrMichael. Злобный, темный, коричневый карлик … комнатной температуры! (рус.). Живая Вселенная (25 августа 2011). Архивировано из первоисточника 9 февраля 2012. Проверено 9 января 2012.

Ссылки

Детали

Звёзды

Звёзды
Эволюция
Протозвёзды

Молекулярное облако • Глобула • Молодые объекты • Объект Хербига — Аро • Трек Хаяши • Предел Хаяси • Трек Хеньи • Орионовы переменные (Типа T Тельца • Фуоры) • Звёзды Хербига (Ae/Be)

Типы

Субкарлик • Карлики (Красный • Жёлтый • Оранжевый • Голубой) • Субгигант • Гиганты (Красный • Голубой • Яркий) • Сверхгиганты (Красный • Жёлтый • Голубой) • Гипергиганты (Жёлтый) • Голубые отставшие звёзды • Оболочечная • Углеродная (Метиновая) • Бариевая • S-типа • Пекулярная • Технециевая • Ртутно-марганцевая • Переменная

Останки
Обычное вещество
Нейтронная звезда
Сверхплотные

Чёрная дыра звёздной массы •

Плотная звезда

Гипотетические

Экзотическая звезда (Кварковая • Преонная • Q) • Железная звезда

«Недозвёзды»

Коричневый карлик • Субкоричневый карлик • Планетар

Строение

Ядро • Конвективная зона • Лучистая зона • Фотосфера • Хромосфера • Корона • Ветер (Пузырь) • Металличность • Магнитное поле • Астросейсмология • Солнцеподобные осцилляции • Предел Эддингтона • Механизм Кельвина — Гельмгольца

Нуклеосинтез

Процессы (s- • r- • p- • rp- • Альфа-) • Тройная гелиевая реакция • Протон-протонный цикл • Углерод-азотный цикл • Гелиевая вспышка • Ядерное горение (Углерода (Детонация) • Кислорода • Неона • Кремния)

Свойства

Спектральный класс • Эффективная температура • Кинематика (Собственное движение • Угловая скорость) • Микротурбулентность • Солнечная масса • Планетная система • Вращение звезды • Звёздная система (Двойная звезда • Кратная звезда) • Звёздная динамика • UBV-фотометрия • Обозначения звёзд • Звёздная величина (Абсолютная)

Списки

Коричневые карлики: от изучения к загадкам

Коричневый карлик 2MASSJ22282889-431 026

Случалось ли Вам смотреть в телескоп в инфракрасном диапазоне? Видели ли Вы тела, которые, родившись звездой, не смогли стать ей? Их судьба – остывать миллионы лет, пережив своих ярко сияющих соседей. Имя им – коричневые карлики.

Общие сведения

Обделенные теплом, размерами, они изучаемы астрономами всего мира. И есть уникальная возможность заглянуть в эти исследования.

Измерения массы и температуры, карта поверхности – все это впереди. А сейчас – туда, откуда началась их история.
А история началась в 1962 году, с молодого американского ученого Шива Кумара. Ему удалось теоретически доказать существование коричневых карликов. Самое интересное, что он абсолютно точно описал все свойства и процессы, протекающие в их недрах. В 23 года!
Изучая звезды массой не более 0,1 массы Солнца (100 масс Юпитера), ему удалось рассчитать минимальную массу, при которой возможно рождение полноценной звезды. Эта отметка называется «предел Кумара». Ниже него термоядерный синтез не происходит.

Рождение звезды

Изображение туманности M42 получено с использованием фильтров серы (красный цвет), водорода (зеленый цвет) и кислорода (синий цвет).

Звезды, как и многие коричневые карлики, рождаются в результате коллапса газовых облаков. Основной химический элемент, содержащийся в этих облаках – молекулярный водород. Долгое время теорией возникновения в космосе «холодных звезд» была именно эта. Новые открытия субзвезд внесли свои коррективы.

Звезда является таковой тогда, когда в ее недрах протекает термоядерный синтез, т.е. горение водорода. Необходимая температура для «старта» – 3 млн градусов. Достигается она сжатием под воздействием гравитации – сжимаясь, увеличивается плотность газового шара. Выше плотность – выше температура. Когда плотность достигает своего предела, происходит воспламенение водорода, т.е. термоядерный синтез.

Рождение коричневого карлика

Ниже предела Кумара водород не воспламеняется. Максимум – дейтерий, изотоп водорода. Но его энергии недостаточно для термоядерного процесса. Согласно квантовой механике, в недрах субзвезд в определенный момент образуется электронный, или вырожденный, газ. Он возникает вследствие гравитации, но препятствует дальнейшему ее воздействию еще до того, как сжатие «запустит» горение водорода.

В 1995 году описанные процессы нашли свое подтверждение. Американские ученые обнаружили в созвездии Плеяды объект массой 0,06 массы Солнца. Чтобы окончательно подтвердить свое открытие, им предстояло проделать немало специализированных тестов.

Идентификация

Двойная система коричневых карликов

Чтобы подтвердить свои предположения, американские ученые применили литиевый тест, сформулированный испанским астрофизиком Рафаэлем Реболо. Суть его проста. Звезды главной последовательности, сжигая водород, достигают крайне высоких температур. Атомы лития, в малом количестве присутствующие в их недрах, сгорают быстро и бесследно. А у коричневых субзвезд, даже с горящим дейтерием, его испарение растягивается на миллионы лет. Поэтому верный способ удостовериться, что обнаружен коричневый карлик – литиевая проба.

Малые размеры субзвезд, их низкая температура, соответствуют средним планетарным показателям. Отличия заключаются в плотности объекта и в наличии у некоторых карликов Х-излучения. Большинство их излучают в инфракрасном диапазоне. Отсюда и название – коричневые.

Существует градация самих коричневых карликов, подразделяющая их на три группы. Вашему вниманию предлагается блиц-осмотр каждого спектрального класса:

  • Класс L – от 1300К до 2000К. Тела этого класса являются самыми теплыми и самыми крупными.
  • Класс Т – от 700К до 1300К.
  • Класс Y. Объекты этого класса являются самыми холодными и самыми «карликовыми». Долгое время они существовали лишь в гипотетических соображениях ученых.

Новые загадки

Коричневый карлик (вверху)

Астрономы XXI века ведут охоту на коричневых карликов. Сканируя небо в инфракрасном диапазоне, обнаружение «холодных» светил увеличилось в разы. Измеряются их температуры, массы, изучаются атмосферы, составляются карты поверхностей. Новые данные не только помогают ученым понять природу небесных тел. Иногда они опровергают устоявшиеся модели, знания. Парадокс. Чем больше открываешь, тем больше предстоит открыть.

Примером этому служит исследование, проведенное учеными Гарвард-Смитсоновского центра астрофизики. Открыв 623 неизвестных коричневых карлика, спектроскопическому анализу подверглись четыре. Полученная информация противоречит представлению о том, что карлики и соседние звезды главной последовательности формируются одновременно в процессе коллапса. Оказалось, что субзвезды образовались существенно позднее звезд, находящихся с ними в одной системе. Пришлось формулировать новую теорию об одиночном формировании исследуемых объектов.

Новые открытия

Самыми активными в изучении коричневых карликов являются сотрудники NASA. Им удалось найти остывающий газовый шар с температурой всего 29оС. Также они смогли описать агрессивную атмосферу, с бушующими штормами, с возможными дождями из раскаленных камней и расплавленного металла на поверхности субзвезд.

Карта поверхности Luhman 16B

Американцам удалось составить карту поверхности коричневого карлика. Выбор пал на объект, находящийся в третьей по близости к Земле системе «морозных» тел.

Ближайшими к нам коричневыми карликами являются компаньон маленькой красной звезды SCR-1845-6357, вращающейся вокруг Солнца, и компаньоны звезды Эпсилон Индейца. Расстояние от нас до них – 12,7 и 11,8 световых лет соответственно. Такая близость дает возможность полномасштабного изучения этих тел.

Рождение новой планеты

Астероидный диск вокруг коричневого карлика (рисунок)

Важным открытием стало формирование протопланетного диска вокруг одного из инфракрасных тел.

Были обнаружены даже пылинки, которых при холодных температурах подобных объектов быть не должно. Атомы вещества, даже в неблагоприятной среде, тянутся друг к другу, образуя твердые космические тела. Это открытие наводит на мысль о дополнении, если не о пересмотре, представлений о планеторождении.

Исследования в этой области сегодня достаточно интенсивны. Значит, новые открытия еще впереди. Чтобы не пропустить ничего занимательного, оформляйте подписку на обновления блога.

КОРИ́ЧНЕВЫЕ КА́РЛИКИ

КОРИ́ЧНЕВЫЕ КА́РЛИКИ, космические тела с массами приблизительно от 0,01 до 0,08 массы Солнца, занимающие промежуточное положение между планетами и звёздами. От обычных звёзд К. к. отличаются тем, что температура в их недрах никогда не достигает значений, необходимых для протекания термоядерной реакции превращения лёгкого изотопа водорода (1H) в гелий (4He), которая обеспечивает длительное свечение обычных звёзд. Именно этим и определяется верхняя граница их массы: 0,075–0,08 массы Солнца. Однако, в отличие от планет, в которых вообще никогда не идут термоядерные реакции, К. к. на раннем этапе жизни разогреваются за счёт гравитационного сжатия настолько (температура в центре около 3 млн. К), что в их недрах может протекать термоядерное горение некоторых химических элементов, например тяжёлого изотопа водорода – дейтерия (2H), а также лития. Это делает их на короткое время похожими на маломассивные звёзды. Нижняя граница массы К. к., отделяющая их от планет, составляет около 13 масс Юпитера ($\approx$0,01 массы Солнца). Но запас дейтерия быстро истощается, а дальнейшему гравитационному сжатию К. к. препятствует его внутреннее давление. У массивных К. к. это давление вырожденного электронного газа (как у белых карликов), у маломассивных К. к. – обычное кулоновское отталкивание (как в недрах планет). После непродолжительной фазы термоядерного горения К. к. начинают остывать и темнеть; их светимость опускается значительно ниже минимальной светимости звёзд (0,01% светимости Солнца) и они становятся невидимыми. Размеры К. к. независимо от их массы и возраста близки к размеру Юпитера. Температура поверхности К. к. даже в период максимальной светимости обычно не превышает 2700 К, поэтому они имеют тёмно-красный, бурый цвет; бóльшая часть их излучения лежит в ИК-области спектра.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *