Кто открыл нептун

Содержание

(Научные сказки Ник. Горькавого см. «Наука и жизнь» №№ 11, 2010 г., № 12, 2010 г., № 1, 2011 г., № 2, 2011 г., № 3, 2011 г. и № 4, 2011 г., № 5, 2011 г., № 6, 2011 г., № 9 , 11, 2011 г., № 6, 7, 2012 г.)

Планета Нептун, открытая 23 сентября 1846 года благодаря двум теоретикам — Урбену Леверье и Джону Адамсу и двум наблюдателям — Иоганну Галле и Генриху д’Арре. Фото NASA. 1989 год. Джон Адамс (1819—1892) — английский астроном и математик, первым рассчитавший траекторию невидимой планеты Нептун. Джордж Эйри (1801—1892) — английский математик и астроном. Директор Гринвичской обсерватории с 1835 по 1881 год. Алексис Бувар (1767—1843) — французский астроном. Исследовал неравномерности в движении Урана и выдвинул гипотезу о существовании заурановой планеты. Урбен Леверье (1811—1877) — французский математик, занимался небесной механикой. В 1846 году опубликовал статью, в которой предсказал траекторию невидимой планеты. Иоганн Галле (1812—1910) — немецкий астроном, открывший вместе с д’Арре планету Нептун. С 1835 года работал помощником Иоганна Энке, директора Берлинской обсерватории. Открыл три кометы и внутреннее кольцо Сатурна. Генрих д’Арре (1822—1875) — немецкий астроном. Соавтор открытия планеты Нептун. Работал в Лейпцигской обсерватории, где в 1851 году открыл периодическую комету (комета 6P/д’Арре), а в 1862 — крупный астероид 76 Фрея. Тритон — крупнейший спутник планеты Нептун. Открыт Ласселем в 1846 году, спустя 17 дней после открытия Нептуна. Полярный ледник состоит из твёрдого азота, чёрные дымы — следы активных гейзеров из жидкого азота. Фото NASA. 1989 год. ‹

Принцесса пришла в комнату, когда дети уже лежали в своих постелях в ожидании очередной истории. Дзинтара уселась в кресло и открыла книгу. Кресло было просторным, и принцесса уютно устроилась в нём с ногами.

— Молодой студент Кембриджа Джон Адамс, — начала она, — очень любил рыться на полках книжных магазинов, где каждый том хранит в себе и тайну, и знание, а книжная обложка — дверь в другой мир: открываешь её и окунаешься в новое захватывающее приключение…

На одной из полок студент наткнулся на брошюру, написанную главным — королевским — астрономом Англии Джорджем Эйри. Адамс пролистал её и узнал об интригующей космической загадке планеты Уран. Её открыл астроном Гершель с помощью своего телескопа. (См. «Наука и жизнь» № 7, 2012 г.) Уран оказался строптивой планетой: она плохо подчинялась ньютоновскому закону гравитации. По сравнению с вычисленным положением, Уран то забегал вперёд, то резко отставал. Мнения учёных разделились. Одни заявили, что Ньютон вывел неточный закон. Другие сочли, что в орбите Урана «неправильно» учтена гравитация Юпитера и Сатурна.

Адамс доверял доказательствам Ньютона и знал, что крупнейшие математики и механики — Эйлер, Даламбер, Лагранж, Лаплас и Гаусс — развили ньютоновскую теорию движения планет до очень высокого уровня, и она прекрасно работала для всех планет, за исключением Урана. Молодой человек снова уткнулся в книгу…

Французский астроном Алексис Бувар, исследовавший странное поведение Урана, выдвинул гипотезу, что на его движение оказывает влияние неизвестная внешняя планета. Но где её искать? Учёные обсуждали возможность теоретического вычисления положения невидимой планеты. Джордж Эйри, который возглавлял Гринвичскую обсерваторию, скептически относился к подобным идеям и рассматривал эту гипотезу как совершенно нереальную. Его мнение охладило многие горячие головы.

Конечно, Адамс купил книгу Эйри. И хотя он был загружен учёбой до предела, часто думал о неведомой планете. Она так захватила воображение молодого человека, что он твёрдо решил сам определить координаты планеты, которая возмущает движение Урана. По мнению Адамса, планета-невидимка должна была располагаться дальше Урана и двигаться по орбите медленнее, чем он. Когда Уран догоняет невидимку, он испытывает сильное притяжение к ней. Для земного наблюдателя в это время Уран движется быстрее обычного. Потом он обгоняет более медленную соседку, и она начинает тянуть его назад. Тут Уран «тормозится», нарушая кеплеровские законы движения космических тел по орбите.

Блестяще окончив летом 1843 года Кембриджский университет, 24-летний Адамс уехал на каникулы к родителям и получил, наконец, возможность приступить к расчётам координат невидимой планеты. К октябрю он уже нашёл первое решение, в котором основные проблемы теории движения Урана объяснялись наличием внешней планеты, располагавшейся в два раза дальше него (это значение орбиты невидимой планеты Адамс выбрал, следуя правилу Тициуса—Боде. См. «Наука и жизнь» № 7, 2012 г.).

Адамс был скромным и робким молодым человеком. Он никому не сообщил о полученных результатах, считая их предварительными, и принялся уточнять данные — в частности, уменьшать радиус орбиты планеты-невидимки, чтобы достичь лучшего совпадения с наблюдениями. Два года Адамс упорно работал и к сентябрю 1845 года получил пятое по счёту, наи-более точное решение для параметров невидимой планеты, включая её небесные координаты. Его-то молодой человек и показал двум знаменитым астрономам — директору Гринвичской обсерватории Джорджу Эйри и директору Кембриджской обсерватории Джеймсу Чэллису (1803—1882).

Ну и какой, по вашему мнению, была реакция пожилых маститых учёных на столь сенсационное сообщение никому не известного выпускника колледжа?

— Пф! — фыркнула Галатея.

Дзинтара кивнула:

— Верно — предельно скептическая. Чэллис позже признался, что постановка вопроса о проведении наблюдений только на основании теоретических выводов представлялась новой и необычной. Короче говоря, директор Кембриджской обсерватории, получив письмо от Адамса, вовсе не бросился к своему прекрасному телескопу с диаметром зеркала в тридцать сантиметров и не навёл его на указанный молодым человеком участок неба. Директор Гринвичской обсерватории поступил точно так же.

Адамс глубоко уважал Эйри и поэтому поехал к нему лично, чтобы рассказать о результатах, но не застал учёного дома и передал через слугу визитку, а также письмо с кратким изложением своей работы. Когда через некоторое время Адамс вернулся к резиденции Эйри, величественный дворецкий не впустил молодого человека в дом, заявив, что королевский астроном обедает и тревожить его нельзя.

Надо ли говорить, что после долгого обеда Эйри, получивший от Адамса письмо с координатами новой планеты, тоже не бросился к телескопу, чтобы проверить идеи какого-то молокососа? Да этот парень мог наделать кучу ошибок в своих вычислениях!

Консерватизм и скептицизм Эйри были просто выдающимися. Он относился к числу тех немногих астрономов, которые всё ещё сомневались в теории Ньютона!

— Почти двести лет прошло после опубликования теории Ньютона, а Эйри сомневался?! — не поверил своим ушам Андрей.

— Не найдя понимания у ведущих астрономов, молодой учёный не стал публиковать своё решение в научном журнале и начал работать над очередным, более точным, уже шестым по счёту расчётом координат планеты-невидимки.

Великие астрономы Эйри и Чэллис и думать забыли о молодом учёном. Но ненадолго — потому что вскоре началось второе действие этой драматичной истории.

В июне 1846 года во Франции вышла подробная статья французского математика, занимавшегося небесной механикой, — Урбена Леверье, который, независимо от Адамса, провёл математические расчёты и тоже определил координаты невидимой планеты, влияющей на движение Урана!

Прочитав статью Леверье, английский королевский астроном Эйри понял, что сел в глубокую лужу. Он тут же встретился с Чэллисом, чей кем-бриджский телескоп был гораздо лучше гринвичского, и предложил ему начать поиски новой планеты; ведь если планету откроют французы, то лужа станет просто громадной!

Чэллису не хотелось начинать новую программу наблюдений. Эйри настаивал и написал ему ещё два письма, предлагая план действий. В конце месяца поиск новой заурановой планеты всё же начался.

План наблюдений, который составили Эйри и Чэллис, ясно показывал: хотя статья Леверье и подтвердила принципиальную правоту молодого Адамса, в его конкретные цифры они верили очень мало, несмотря на то что тот дал наиболее вероятное положение планеты на небе. Вместо того чтобы начать наблюдение вокруг этой точки, Эйри и Чэллис выделили на звёздном небе участок вдоль эклиптики и собрались дважды перебрать тысячи звёзд, чтобы найти планету по её смещению среди неподвижных звёзд.

Джон Адамс, первым рассчитавший траекторию невидимой планеты, оценил также её размер и яркость и отметил, что в отличие от звезды она должна иметь заметный диск. Эйри и Чэллис не поверили и этому. Чэллис не искал объекты с диском, а захватывал при наблюдении гораздо более слабые и точечные звёзды, увеличивая список просматриваемых объектов во много раз.

За два месяца директор Кембридж-ской обсерватории «перебрал» три тысячи звёзд — и все они оказались на месте! Учёный уже готов был заявить, что планеты, предсказанной юнцом, не существует, но в конце сентября он прочитал очередную статью теоретика Леверье. Тот прямо советовал тугодумам-наблюдателям искать новую планету по диску. Ворча, Чэллис начал поиск новым способом — просто высматривая диск среди звёзд. И вскоре — всего лишь после трёх часов наблюдений — заметил объект с небольшим диском и сообщил об увиденном своему ассистенту. Чтобы проверить, планета ли это, нужно было всего лишь надеть на телескоп окуляр с бóльшим разрешением. Но в эту ночь Чэллис не стал монтировать новый окуляр, а в следующую решил вообще не ходить на наблюдения, так как Луна переместилась и стала, по его мнению, засвечивать нужный участок неба. А вдруг планета была ещё видна? Может, стоило проверить? Но Чэллис предпочёл лечь спать.

Утром первого октября он встал, с аппетитом позавтракал, читая свежую лондонскую газету «Таймс». И тут его аппетит напрочь пропал: он увидел сообщение о том, что новую планету уже открыли в Европе! В Европе — но не во Франции. Франция, как оказалось, стóит Англии. Когда француз Леверье опубликовал работу с предсказанием координат новой планеты, сколько французских наблюдателей бросились проверять указанный участок неба?

— Ни одного, — догадалась Галатея.

— Правильно! Справедливости ради нужно сказать, что молодые астрономы Парижской и Вашингтонской обсерваторий рвались к телескопам, но их почтенные руководители, проявив интернациональное единодушие, быстро указали молодым их место — каждый сверчок знай свой шесток.

В отличие от робкого и неопытного Адамса, Леверье был матёр, горяч и нетерпелив. Не найдя отклика у французских наблюдателей, он обратился к зарубежным астрономам, предлагая им заняться поисками новой планеты. Он даже написал письмо с этим предложением королевскому астроному Эйри в Англию.

— Неправильный ход! — заметил Андрей.

— Верно. Ввиду «близкого отъезда в Европу» Эйри отклонил предложение Леверье, который готов был прислать детальные данные для наблюдений. Королевский астроном попросту искал способ отделаться от него. На самом деле, хотя до поездки оставалось всего полтора месяца, он уже начал поиски планеты по данным Адамса, но из патриотических убеждений не хотел принять помощь от француза.

Леверье понял, что со стариками, сидящими во главе обсерваторий, никакой каши не сваришь. И сделал умный ход. Он вспомнил, что в Берлинской обсерватории работает молодой астроном Иоганн Галле, приславший ему год назад свою диссертацию. Леверье написал Галле письмо, где сначала похвалил его труд, а потом изложил главное — просьбу о поиске новой планеты. Леверье привёл в письме её координаты и оценку размера диска.

Иоганн Галле получил письмо днём 23 сентября и тут же загорелся этой идеей.

— Наконец-то! — облегчённо перевёл дух Андрей.

— Если бы Леверье написал директору Берлинской обсерватории — пожилому и заслуженному Иоганну Энке (1791—1865), то из этого снова ничего бы не вышло. Энке был против новых наблюдений вне утверждённого плана.

В ту же ночь Галле сел за 23-сантиметровый телескоп. Ему вызвался помогать молодой студент Генрих д´Арре, который тоже увлёкся поиском новой планеты. Галле стал просматривать звёзды в указанной Леверье области, но диска нигде не обнаружил — увеличивающей силы окуляра телескопа не хватало.

Что было делать? Студенту пришла в голову замечательная мысль — воспользоваться только что напечатанным очень детальным берлинским атласом звёзд. Он предложил сравнить картину неба с каталогом, чтобы проверить, не затесалась ли среди неподвижных звёзд лишняя, подвижная, то есть планета. Сказано — сделано. Галле смотрел в телескоп и называл координаты видимых светил, а д´Арре искал их в каталоге. Уже в полночь Галле назвал координаты довольно яркой звезды, но д´Арре не нашёл её в каталоге!

Эврика!

Всего за несколько часов Галле и д´Арре нашли предсказанную Леверье планету! Её наблюдаемое положение не совпадало с вычисленным всего на один градус! Случилось это 23 сентября 1846 года.

Генрих немедленно побежал будить директора. Неслыханная дерзость! Но даже старые лошадки вскидываются, когда слышат такие новости. Энке поспешил к телескопу, и уже втроём они наблюдали новое светило до утра. Чтобы исключить ошибку, они продолжили наблюдение в следующую ночь. Более сильный окуляр показал, что у планеты есть заметный диск и что сместилась она за ночь как раз на предсказанную Леверье величину. Какое же исключительное наслаждение испытали за эти две ночи наблюдений три астронома, став участниками и свидетелями изменения картины мира!

Утром 25 сентября Галле написал письмо Леверье с победным известием. Почтовые лошади, подгоняемые запылённым курьером, быстро доставили сообщение из Берлина в Париж. Получив его, Леверье, без сомнения, испытал самый звёздный момент жизни.

Узнав об открытии новой планеты, английские и французские наблюдатели сильно расстроились. В обеих странах разразился политический скандал из-за упущенного национального престижа. Чэллис просмотрел свои записи и с ужасом обнаружил, что за два последних месяца он наблюдал новую планету уже трижды, но не понял этого!

— Почему?! — удивилась Галатея.

— Из-за невнимательности. Он не слишком скрупулёзно сравнивал данные наблюдений разных дней. Злые языки говорили, что жена не вовремя позвала астронома к чаю, из-за чего он не смог открыть новую планету. Кстати, если бы Чэллис 30 сентября исследовал замеченный накануне диск (было доказано, что небо это позволяло), то стал бы, по крайней мере, независимым открывателем новой планеты.

Английские газеты яростно напали на королевского астронома Эйри и на директора Кембриджской обсерватории Чэллиса. Журналисты требовали от них ответа, почему не они открыли новую планету, зная её координаты целый год? Французская пресса тоже не церемонилась с наблюдателями из Парижской обсерватории и задавалась тем же вопросом: почему планету француза Леверье открыли в Германии?!

Эйри и Чэллис написали много статей и мемуаров, объясняя, почему они не обращали внимания на работу Адамса. Эйри даже заявил в свою защиту, что открытие новой планеты не входит в обязанности королевского астронома. Впрочем, математик и астроном Эйри за свою долгую жизнь, продолжавшуюся почти всё девятнадцатое столетие, не раз проявлял удивительный консерватизм и терпел неудачи. В 30-х годах он не поверил инженеру Расселу, открывшему солитон. В 40-х — не поверил Адамсу, предсказавшему существование Нептуна. В 70-х, выступая консультантом при строительстве железнодорожного моста, Эйри недооценил уровень ветрового давления. Штормовым вечером 28 декабря 1879 года мост рухнул вместе с проходившим по нему поездом. Все пассажиры — семьдесят пять человек — погибли, а Эйри вызвали в суд для дачи показаний. В 80-х он предложил новую теорию движения Луны, но уже после публикации обнаружил, что в сложные вычисления в самом начале вкралась ошибка, обесценившая всю теорию. Директор Кембриджской обсерватории Чэллис тоже вошёл в историю, в основном, благодаря своим неудачным поискам планеты-невидимки.

Открытие Нептуна — так назвали планету в честь римского бога морей — стало уроком для многих астрономов-консерваторов и триумфом для ньютоновской механики, которая оказалась исключительно точным и полезным инструментом науки. Адамс получил свою порцию славы — его роль в открытии Нептуна отметили, а работу опубликовали. Он провёл свои вычисления орбиты невидимой планеты раньше Леверье, но независимые расчёты француза оказались точнее — именно они привели к открытию. Леверье мгновенно прославился на весь мир.

Ещё одно важное научное достижение французского учёного — теория движения Меркурия. В 1859 году, будучи уже маститым директором Парижской обсерватории, Леверье открыл аномальную прецессию орбиты Меркурия — её кеплеровский эллипс смещается (дрейфует, как по-моряцки говорят небесные механики) чуть быстрее, чем следует из ньютонов-ской теории.

Леверье глубоко верил в эту теорию и предположил, как и в случае с Ураном, что существует невидимая планета Вулкан, движущаяся вокруг Солнца и влияющая на Меркурий. Но здесь Леверье оказался неправ — никакого Вулкана возле Солнца не нашли, просто астроном обнаружил пределы применимости теории Ньютона.

— Ну, прямо наваждение какое-то! — удивился Андрей, которого, в отличие от младшей сестры, так и не удалось усыпить длинной историей.

Дзинтара улыбнулась и негромко сказала:

— Через шестьдесят лет из этой аномальной прецессии Меркурия родилась теория гравитации Эйнштейна, которая сменила теорию гравитации Ньютона на посту управителя небес. Эпоха небесной механики уступила дорогу эпохе небесной физики, а новое время всегда рождает новые сказки.

***
Эклиптика — большой круг небесной сферы, по которому происходит видимое движение Солнце, или круг, образованный сечением небесной сферы плоскостью орбиты Земли.

Аномальная прецессия Меркурия — аномальное смещение эллипса, по которому движется Меркурий. Теория Ньютона предсказывает определённую скорость поворота эллипса вокруг Солнца — из-за воздействия других планет, но в реальности орбита Меркурия смещается быстрее. Аномальная скорость прецессии получила объяснение лишь в теории Эйнштейна, которая установила искривление пространства возле Солнца.

Биография Леверье Урбена Жана Жозефа

Французский математик Леверье известен своими исследованиями в области небесной механики. После открытия Нептуна становится членом Парижской академии наук, иностранным членом-корреспондентом Петербургской академии наук. Ученный известен, как автор множества работ о движении больших планет и устойчивости Солнечной системы.

Юные годы и начало карьеры



Будущий астроном родился 11 марта 1811 года в Нормандии (город Сен-ло) в семье мелкого чиновника. Уже в школе мальчик проявил интерес к точным наукам, который был замечен и родителями. Они отправили сына на 2 года в Каенский колледж для изучения математики, который он окончил в 1830 году с намерением дальнейшего поступления в Политехническую школу.

Урбен Жан Жозеф провалил свой вступительный экзамен. Родители вынуждены были продать дом, чтобы послать сына на обучение в сильный на то время Парижский колледж Сен-Луи.

Ровно через год Леверье повторно сдает вступительные экзамены в Политехническую школу, и, на этот раз, успешно становится одним из ее студентов. Будучи студентом, он не проявлял особой привязанности к конкретной точной науке, но ему удавалось практически все, за что бы не брался.

Через три года будущий ученный оканчивает школу с отличием и получает право самостоятельно выбрать себе работу. Выбрав должность химика в одном из госучреждений (лаборатория Ж.Гей-Люссака), с 1835 по 1837 гг. он активно издает научные работы именно в области химии.

Первая статья Леверье по химии (1835г.)

В астрономию Леверье попал волей случая, ранее он этой наукой не интересовался. Но, в 1837 году в Политехнической школе становятся вакантными две должности ассистентов по астрономии и химии. Интересующую должность ассистента по химии отдали настоящему химику по призванию Анри Рено. Леверье доверили преподавать астрономию.

Несмотря на столь позднее открытие для себя науки астрономии (Леверье было уже 26 лет), его карьера развивалась очень стремительно. В 1839 году он представлен свой первый научный труд, который был высоко оценен. В этом же году поступает в Парижскую обсерваторию астрономом. В 1846 году под него была создана кафедра небесной механики, которую он же и возглавил. Спустя еще три года в университете была организована кафедра астрономии.

В 1854-1870 и в 1873-1877 (до самой смерти) занимал должность директора Парижской обсерватории.

Научная работа

Главные научные работы Леверье посвящены небесной механике. Наиболее известное достижение ученого – открытие планеты Нептун. Свое открытие ученый сделал на основе математического анализа проведенных ранее астрономических наблюдений. В 1845 году ему поручили изучить аномалии в движениях Урана. Ученый выдвинут теорию, что причиной являются гравитационные возмущения со стороны неизвестного объекта.

Леверье обратился за помощью немецкому астроному Галле, который после длительных исследований подтвердил расчеты француза.

Статья Леверье в журнале Лиувилля (1840 г.)

После открытия Нептуна астроном занялся исследованием отклонений орбиты Меркурия. Исследования вызвали целую волну ложных открытий, но стали основой для выдвинутой в 1915 году теории относительности Эйнштейна.

В 1849 году разработал обширную программу, которая помогла уточнить теорию движения больших планет. Также Леверье активно занимался исследованием процесс образования астероидов. Ученый считал эти небесные тела результатом распада планеты под воздействием приливных сил Юпитера.


Теория планет и планетные таблицы, разработанные Леверье, используется и сегодня Парижским Бюро долгот для составления различных астрономических ежедневников. Таблицы отличаются высокой точностью.

Стоит отметить и исследования в области изучения орбит комет и метеоритных потоков. Он провел вычисление кометы Лекселя, открытой в 1770 году, а также ряда других небесных тел. По его инициативе во Франции открыли сеть метеорологических станций.

Награды при жизни

Самым триумфальным годом в биографии ученого стал 1846, когда он открыл Нептун. Исследование принесло ему множество наград и дипломов от научных сообществ, иностранных академий наук. В этом же году его избрали членом Парижской АН.

В 1846 году ученый награжден медалью Копли Лондонского Королевского Астрономического общества. В 1868 и 1876 гг. был награжден Золотой медалью того же общества.

Леверье был почетным членом Петербуржской академии наук и немецкого Королевского Общества в Гетпшгене. Французский король сделал его офицером Почетного легиона, а король Дании присвоил наивысшее звание королевства.

Память

Памятник Леверье у Парижской обсерватории

Урбен Жан Жозеф Леверье скончался в 1877 году в Париже, там же и похоронен на кладбище Монпарнас. На территории Парижской обсерватории, которую он возглавлял до конца своей жизни, поставлен памятник выдающемуся астроному.

Гробница Леверье на кладбище Монпарнас в Париже

Также в честь французского ученого названы кратер на видимой стороне Луны, кратер на Марсе, астероид 1997 и кольцо Нептуна.

Общие сведения

Нептун — самая последняя планета по удаленности от Солнца. Такое название объект получил в честь мифического персонажа древних римлян — владыки морей.

Нептун обнаружили в 1846 году. Он стал первым небесным телом, которое открыли путем точных расчетов. Другие же космические объекты были открыты в ходе регулярных исследований. Заметив сильные перемены в орбите Урана, ученые того времени начали подозревать наличие еще одной планеты. Чуть позже Нептун нашли в предполагаемой области. После данного открытия была обнаружена и его самая крупная луна — Тритон.

Проводя свои наблюдения, Галилей принял Нептун за светило на ночном небосводе. По этой причине его не признали первооткрывателем планеты.
В 1612 году Нептун приблизился к точке стояния. Именно этот момент был переходным для планеты к обратному движению. Его можно наблюдать, например, когда Земля начинает перегонять по своей орбите внешнюю. И, в связи с тем, что Нептун подходил к точке стояния, его движение было очень медленным, чтобы зафиксировать это при помощи примитивных приспособлений того времени.

Чуть позднее — в 1821 году ученый Алексим Бувар представил свои таблицы орбиты Урана. В ходе дальнейших мероприятий по изучению планеты были отмечены существенные несоответствия реального его движения с этими таблицами. Британец Т.Хасси, исходя из результатов своих работ, выдвинул версию о том, что аномалии в орбите Урана, возможно, вызваны другим небесным объектом. В 1834 произошла встреча Хасси и Бувара, на которой последний дал обещание провести новые вычисления, необходимые для определения местонахождения новой планеты. Но известно, что после данной встречи Бувара более не занимала данная тема. В 1843 Д. Куч Адамсу удалось вычислить орбиту неизвестной планеты для «оправдания» несоответствий в орбите Урана. Астроном направил итоги своей работы Джоржу Эйри, который являлся королевским астрономом. Но, как выяснилось, и он не отнесся серьезно к рассмотрению подробностей этого дела.

Урбен Леверье в 1845 году приступил к собственным расчетам. Но сотрудники главной обсерватории Парижа отказывались воспринимать идеи ученого всерьез и содействовать поиску 8-ой планеты. В 1846 году, изучив работу Леверье по оценке долготы объекта и убедившись в том, что его результат схож с Результатов Адамса, Эйри попросил Д. Чэллиса — руководителя Кембриджской обсерватории, все же приступить к поиску. Самому Чэллису неоднократно доводилось видеть Нептун на ночном небе. Но ввиду того, что астроном все время откладывал проведение анализа наблюдений, ему также не удалось стать его первооткрывателем.

Через некоторое время Леверье убеждает работника Берлинской обсерватории — Иоганна Галле в успехе планируемого исследования. Затем Генрих Д.Арре предлагает Галле произвести сравнения с ранее созданной картой части небосвода с представленными Леверье новыми координатами. Это было необходимо для определения направления движения объекта на фоне звезд. Нептун открыли в эту же ночь. Далее в течение 2-х суток ученые продолжали наблюдения за областью неба, которую определил Леверье. Им было необходимо убедиться в том, что данный объект в действительности является планетой. Итак, 23 сентября 1846 года — официальная дата обнаружения 8-ой планеты системы нашей звезды.

Чуть позже из-за данного события возникло множество споров между французскими и английскими учеными по поводу того, кого же считать первооткрывателем. В итоге ими были признаны сразу двое ученых — Адамс и Леверье. Но после обнаружения бумаг в 1998, тайно присвоенных Дж. Эггеном, оказалось, что Леверье имеет намного больше прав называться первооткрывателем Нептуна, нежели его коллега.

Восьмая планета не сразу получила свое законное название. Какоке-то время после ее обнаружения в кругу ученых она обозначалась, как «внешняя от Урана планета». Некоторые называли ее просто «планетой Леверье». Впервые название для объекта было предложено Галле. Ученый порекомендовал назвать ее «Янус». Англичанин Чайлз предложил название «Океан».

Но как первооткрыватель, Леверье счел, что именно он должен наречь обнаруженный им объект. Ученый решил назвать его Нептуном, ссылаясь на одобрение этого решения французским бюро долгот. Известно, что ранее астроном хотел наречь планету своим именем, но данное решение вызвало протест за границей.

Василий Струве -руководитель Пулковской обсерватории счел «Нептун» наиболее подходящим названием для планеты. Древние римляне считали Нептун покровителем морей, также, как греки Посейдона.

Статус планеты Нептун

После обнаружения вплоть до 30-го года прошлого века Нептун считали крайним крупным объектом Солнечной системы. Но после более позднеего открытия Плутона, Нептун превратился в предпоследнюю планету. Но при тщательном изучении пояса Койпера, ученые старались определиться со следующим вопросом: причислять ли Плутон к планетам, или же считать его обитателем пояса Койпера? Только в 2006 году было решено оставить Плутону статус карликовой планеты. А значит и Нептун снова стали считать последней планетой в Солнечной системе.

Эволюция представления о планете Нептун

В середине прошлого века информация о Нептуне кардинально разнились с сегодняшними данными. Например, ранее масса Нептуна приравнивалась к 1726 земным, вместо действительных 1515. Также предполагалось, что размер радиуса экватора — 3,00, вместо настоящих 3,88 от радиуса Земли.

Также до полного исследования Нептуна «Вояджером-2» считалось, что его магнитное поле идентично магнитным полям Земли и Сатурна. Но после долгих наблюдений оказалось, что оно имеет форму «наклонного ротатора».

Физические характеристики планеты Нептун

Имея массу 1,0243•1026 кг, можно сказать, что Нептун по своим габаритам занимает среднее положение между Землей и крупными газовыми планетам. Его массовые показатели в 17 раз превышают земные. В то время, как Нептун составляет только 1⁄19 массы Юпитера. Уран с Нептуном принято причислять к подклассу газовых гигантов. Иногда их называют «ледяными гигантами». Это связанно с их «скромными» габаритами и высокой концентрацией легких элементов. Нептун также используют при изучении экзопланет, как метоним. Известные космические тела с идентичной ему массой нередко зовутся «Нептунами».

Орбита и вращение планеты Нептун

Дистанция между Нептуном и нашей звездой равна 4,55 млрд км. Полный цикл вокруг нее Нептун завершает почти за 165 лет. Сама планета находится от Земли на дистанции 4,3036 млрд км. В 2011 году Нептун полностью завершил первый оборот вокруг звезды со времен его обнаружения.

Сидерический период обращения Нептуна — 16,11 часа. В связи с тем, что поверхность Нептуна не твердая, принцип вращения его атмосферы характеризуется, как дифференциальный. Область экватора планеты обращается с 18-ти часовым периодом. Это относительно медленно по сравнению со скоростью вращения магнитного поля Нептуна. Его полярные области совершают полный оборот вокруг себя за 12 земных часов. Из всех объектов, обитающих во внутренней части нашей Солнечной системы, данный принцип вращения отмечается только у Нептуна. Этот феномен является первопричиной широтного сдвига ветров.

Орбитальные резонансы

Известно, что Нептун оказывает достаточно сильное влияние даже на тела пояса Койпера. Нужно напомнить, что данный пояс является неким кольцом. Оно включает в себя малогабаритные ледяные планеты. Пояс чем-то схож с астероидным поясом, находящимся между Юпитером и Марсом. Пояс Койпера берет начало от определенной зоны орбиты Нептуна (30 а.е) и тянется до 55 а.е от звезды. Влияние гравитации Нептуна на объекты пояса Койпера значительное. Известно, что за все существования Солнечной системы многие объекты были «выведены» из области пояса под влиянием гравитации Нептуна. Вследствие чего на месте исчезнувших тел образовались пустоты.

Орбиты объектов, удерживаемых в области этого пояса, на протяжении значительных промежутков времени, определяются вековыми резонансами с Нептуном. Из них есть и такие, для которых данные промежутки сопоставимы со всем периодом существования нашей звездной системы.

Внутреннее устройство Нептуна

Если говорить о внутреннем устройстве планеты, то нужно отметить, как оно схоже с внутренним строением планеты Уран. Сама атмосфера Нептуна составляет около 10-20% от его суммарной массы. В зоне ядра давление достигает 10 ГПА. Самые низкие слои атмосферы насыщены большим количеством метана, аммиака и воды.

Внутреннее устройство планеты Нептун:

1. Верхний атмосферный слой, в том числе образования облаков, находящиеся на ее высоких уровнях.

2. Атмосфера, в которой преобладает метан, водород и гелий.

3. Мантия, в которой содержится значительное количество метанового льда, воды и аммиака.

4. Каменно-ледяное ядро со временем темная и сильно нагретая область начинает преобразовываться в жидкую мантию. Показатели ее температуры колеблются от 2000 до 5000 К. Массовые показатели мантии превосходят земные в 10-15 раз. Ученые полагают, что она насыщена большим количеством метана, воды и аммиака. Данная материя также по устоявшимся среди ученых терминов называют ледяной. И это, несмотря на то, что в действительности она очень горяча. Жидкая мантия обладает отличной электропроводностью. Именно поэтому ее зачастую называют океаном жидкого аммиака. Ученые полагают, что ядро Нептуна обволакивает «алмазная жидкость». Его масса примерно в 1,2 раза превышает земную. Ядро состоит по большей части из следующих элементов: никеля, силикатов и железа.

Магнитосфера планеты Нептуна

Своим магнитным полем и магнитосферой он сильно схож с Ураном. Они также достаточно сильно наклонены от оси планеты. До изучения Нептуна «Вояджером-2» астрофизики считали, что наклон магнитосферы Урана является, так называемым, «побочным эффектом» бокового вращения. Но сегодня, получив больше информации, ученые убеждены, что такая особенность магнитосферы объясняется действием приливов во внутренних зонах.

Магнитное поле планеты имеет комплексную геометрию. В нее входит существенные включения от небиполярных компонентов, таких как квадрипольный момент. По своей мощности он превосходит дипольный. Например, у Земли, Сатурна и Юпитера он относительно мал, в связи с чем их поля не так сильно «отходят» от оси.

Головная ударная волна планеты — область магнитосферы, в которой случается изменение скорости солнечного ветра. Здесь его движение начинает ощутимо замедляться. Эта зона располагается на дистанции, измеряемой в 34,9 планетарных радиусах. Магнитопауза — это зона, где солнечные ветра уравновешиваются сильным давлением. Она находится на расстоянии 25 радиусов планеты. Длина хвоста магнитосферы простирается на расстояние, равное 72 радиусам или более.

Атмосфера планеты Нептун

В верхних слоях атмосферы Нептуна имеется гелий (19%) и водород ( 80%). В небольших количествах здесь также находится и метан. Видимые полосы его поглощения видны при наблюдениях в инфракрасном диапазоне. Известно, что метан хорошо поглощает красный цвет, именно поэтому атмосфера планеты имеет преимущественно синий оттенок.

Процентное содержание метана в атмосфере Нептуна практически такое же, как и у Урана. Поэтому ученые предполагают, что существует еще один особый элемент, которые придает атмосфере синеватый оттенок.

Атмосфера Нептуна делится на тропосферу и стратосферу. В тропосфере температура понижается по мере удаленности от поверхности. А в стратосфере наоборот — температура по мере приближения к поверхности повышается. Пограничной «подушкой» между ними является тропопауза. Она состоит из образований облаков, имеющих разный химический состав.

При давлении, оценивающемся 5 барами, начинают образовываться аммиачные и сероводородные облака. При давлении выше 5 бар формируются новые облака из сульфида аммония и воды. По мере приближения к поверхности планеты, при давлении в 50 бар, появляются облака из водяного пара.

Образования облаков, находящихся на высоком уровне, наблюдались «Вояджером-2» по их теням, которые проецировались на плотный нижний слой. На нем также можно было разглядеть облачные полосы, «окутывающие» планету.
Тщательные исследования Нептуна помогли ученым выявить, что низкие уровни его стратосферы мутнеют под влиянием испарений ультрафиолетового фотолиза метана. В стратосфере Нептуна были также найдены: циановодород и угарный газ. В целом температура стратосферы Нептуна значительно выше, чем температура стратосферы Урана. Причина тому- наиболее высокое процентное содержание в ней углерода. По непонятным причинам термосфера Нептуна имеет чрезвычайно высокую температуру — 750 К. Это нехарактерно для планеты, которая находится на достаточно большой дистанции от Солнца. Это значит, что на таком расстоянии термосфера не может прогреваться ультрафиолетовой радиацией до такого уровня. Ученые считают, что данная аномалия связана с взаимодействием термосферы с ионами магнитного поля Нептуна. Существует также и другая версия, объясняющая данный феномен. Считается, что разогрев термосферы осуществляется с подачи волн гравитации внутренней части планеты. Затем они просто развеиваются в атмосфере. Известно, что в термосфере имеется наличие следов угарного газа и воды. Астрофизики считают, что они оказались здесь посредством внешних источников.

Климат планеты Нептун

На Нептуне преобладают штормы и ветра, достигающие скорости до 600 м/с. В процессе наблюдения за принципом движения облаков ученые вычислили еще одну закономерность: скорость ветров изменяется при движении от восточной области к западной. На верхних уровнях атмосферы преобладают ветра, средняя скорость движения которых равна 400 м/с. В зоне экватора и полюсов — 250 м/с.

Ветра Нептуна в основном дуют в направлении противоположном его вращению. Схема движения ветров, составленная учеными, указывает на то, что в более высоких широтах направление ветров все же совпадает с направлением вращения планеты вокруг своей оси. В более низких широтах ветра движутся преимущественно в противоположном направлении. Ученые считают, что объяснение данным различиям является «скин-эффект», а не иные атмосферные процессы. В атмосфере планеты ацетилен, метан и этан находятся в большем количестве, нежели, чем в зоне его полюсов.

Данные наблюдения практически являются объяснением существования апвеллинга в экваториальной зоне планеты. В 2007 было выяснено то, что температура в верхней области тропосферы на 10 градусов выше, чем в остальных частях планеты. Такой существенный перепад по мнению ученых повлиял на метан, изначально находившийся в застывшем состоянии. Он стал просачиваться в космическое пространство через южный полюс Нептуна. Главная причина этой аномалии по общепринятому мнению является угол наклона самого объекта.

По мере продвижения планеты к противоположной стороне звезды, ее южный полюс начнет затеняться. Это указывает на то, что Нептун будет обращен к звезде уже северным полюсом. И «высвобождение» метана в космос теперь будет осуществляться из области северного полюса.

Штормы на планете Нептун

В 1989 года космической машиной «Воядже-2» было обнаружено «Большое темное пятно». Оно представляет собой устойчивый шторм, размеры которого достигают 13 000 × 6600 км. Данная аномалия ассоциировалась у ученых с известным «Большим красным пятном», присутствующим на Юпитере. Но в 1994 году космическим телескопом «Хаббл» темное пятно Нептуна не было обнаружено на том месте, где его зафиксировал «Вояджер-2». Вместо черного пятна здесь было замечено другое образование — Стулкер. Это шторм, зафиксированный в южной стороне от «Большого темного пятна». Малое темное пятно представляет собой второй по мощности шторм, который был открыт в процессе приближения машины к планете, которое произошло в 1989 году. Сначала оно визуализировалось, как затемненная область. Но по мере приближения «Вояджера-2» к Нептуну, его очертания на снимках стали четче, за счет чего ученые сразу заметили на нем различные облачные образования: густые, более разреженные, яркие и темные.

Астрофизики считают, что более темные пятна образуются в нижних слоях тропосферы, нежели более яркие и разреженные облака
Данные штормы устойчивые со средней продолжительностью «жизни» до нескольких месяцев. Значит можно сделать вывод, что они имеют вихревую структуру. Лучше всего с темными пятнами сливаются более яркие облака метана, которые рождаются в тропопаузе.

Постоянство данных облаков указывает на то, что старые «темные пятна» все же могут продолжать существовать в качестве циклонов. Но в этом случае их темный окрас будет потерян. Данные образования могут рассеиваться, если они находятся вблизи экватора.

Внутреннее тепло планеты Нептун

Несмотря на то, что Нептун и Уран схожи во многом, у Нептуна погодное разнообразие намного больше. Это объясняется его повышенной внутренней температурой. И это, несмотря на то, что Нептун располагается на большей дистанции от Солнца, нежели Уран.

Поверхностные температурные показатели данных планет приблизительно одинаковые. В верхних слоях тропосферы Нептуна температура равна -222°C. В глубинах при давлении, равном 1 бару, температурные показатели равны -201°C. Более глубокие нижние слои состоят из газов, но температура в данной области повышается. Причина именно такого распределения тепла, как и принцип нагрева, учеными пока не выяснены. Известно лишь то, что от Урана исходит в 1,1 раз количества энергии больше, чем он получает от звезды. От Нептуна исходит в 2,61 раза больше количества энергии, чем он принимает от Солнца. Количество производимого им тепла равно 161% от получаемой им звездной энергии. При том, что Нептун является самой удаленной от звезды планетой, его энергетического потенциала хватает, чтобы ветра до невероятных скоростей, которые только могут быть в пределах Солнечной системы. Данному феномену ученые дают сразу несколько толкований. Перовое — радиогенный нагрев, осуществляемый «сердцем» (ядром) Нептуна. Второе — преобразование метана в цепные углеводороды. Третье — конвекция, происходящая на более глубоких атмосферных слоях, которая провоцирует замедление гравитационных волн над областью тропопаузы.

Образование и миграция Планеты Нептун

Ученым даже сегодня трудно воссоздать процесс образования ледяных гигантов, к которым относятся Нептун и Уран. Нынешние модели указывают на то, что плотность вещества во внешней зоне Солнечной системы была чересчур низкой для образования объектов подобных размеров методом аккреции материи на ядро. Сегодня существует масса гипотез об эволюции этих двух тел. Сутью одной из самых распространенных теорий является то, что эти ледяные планеты образовались вследствие нестабильности протопланетного диска. И уже на последних стадиях формирования их атмосферы начали уноситься в космос под воздействием массивных светил класса B и O.

Суть менее популярной гипотезы — Нептун с Ураном формировались на минимальном расстоянии от Солнца. В данной области плотность вещества была выше, и вскоре планеты оказались на текущих орбитах. Теория о «переходе» Нептуна достаточно известна. Ею подразумевается, что при движении Нептуна наружу, он систематически пересекался с телами, относящимися к прото-поясу Койпера. Планета формировала новые резонансы и беспорядочно «корректировала» текущие орбиты. Предполагается, что тела рассеянного диска имеют такое положение по причине этого резонансного воздействия, спровоцированного миграцией Нептуна.

В 2004 году Аллесандро Мобиделлии предложил новую модель. Ее суть — приближение Нептуна к поясу Койпера, спровоцированное резонансным формированием 1:2 в орбите Сатурна и Нептуна. Они сыграли роль гравитационных усилителей, подтолкнувшие Нептун и Уран на новые орбиты. Кроме этого, такой резонанс способствовал изменению их местонахождения. Вполне возможно, что причиной выталкивания тел из области пояса Койпера явилась «Поздняя тяжелая бомбардировка». По мнению ученых она произошла 600 млн лет после завершения становления Солнечной системы.

Спутники планеты Нептун

На сегодня существует 14 известных спутников Нептуна. Масса самого крупного — 99,5% от общей массы всех лун планеты. Данный объект был назван Тритоном. Его открыл Уильям Лассел. Это произошло ровно через 15 дней после официального объявления об открытии Нептуна. В отличии от иных лун, находящихся в Солнечной системе, у Тритона имеется ретроградная орбита. Не исключено, что он был притянут гравитацией Нептуна, а не был сформирован в своем текущем месте обращения. Многие ученые полагают, что он мог изначально быть карликовой планетой, принадлежащей к поясу Койпера. Из-за воздействия приливного ускорения Тритон спиралеобразно и достаточно медленно продвигается к Нептуну. В конечном итоге он разрушится, когда подойдет к пределу Роша. Вследствие этого образуется новое кольцо, которое по массивности можно будет сравнить с кольцами Сатурна. По прогнозам ученых это событие произойдет через 10-100 млн лет.

В 1989 ученые получили данные о температуре, преобладающей на Тритоне. Она оставила -235 °C. В то время это было самое малое значение для тел нашей звездной системы, у которых отмечается геологическая активность. Тритон причисляется к одному из трех лун, обитающих в Солнечной системе, у которых имеется атмосфера. Двое из них — это Титан и Ио. Астрономы также не исключают у Тритона наличие внутреннего жидкого океана.

Второй по времени обнаружения спутник Нептуна — Нереида. Она также обладает неправильной формой. Эксцентриситет ее орбиты считается самым высоким из всех подобных тел внутренней области Солнечной системы.

Осенью 1989 года машине «Вояджер-2» удалось обнаружить у Нептуна наличие 6-ти новых спутников. В небольшой степени внимание ученых привлек Протей, который имеет неправильную форму, подобную Тритону. Астрономы выделили его ввиду того, что он не был стянут в сферическую форму под действием собственной силы гравитации. Это значит, что Протей, во всей видимости, обладает огромной плотностью.

К самым близким спутникам Нептуна причисляются: Наяда, Галатея, Таласса и Деспита. Орбиты данных тел настолько приближены к планете, что затрагивают зону колец планеты. Ларисса в действительности была обнаружена в 1981 году во время наблюдений перекрытия светила, зафиксированное «Вояджером-2». Но в 1989, когда машина подошла на минимальное расстояние к Нептуну, оказалось что при данном покрытии было получен снимок спутника. В 2002-2003 годах машиной «Хаббл» был зафиксирован последний, самый малый известный спутник Нептуна.

Кольца планеты Нептун

У Нептуна также, как и у Сатурна, имеется кольцевая система. Эти кольца по мнению ученых состоят из ледяных фрагментов, которые покрыты силикатами. Некоторые астрономы считают, что их основной составляющей может быть углеродные соединения, которые и придают кольцам красноватый оттенок.

Наблюдения за планетой Нептун

Нептун невозможно увидеть без специальной аппаратуры. И все потому, что он имеет слишком слабую яркость. А это значит, что спутники Юпитера, астероиды 2 Паллада, 6Геба, 4Веста, 7Ирида и 3 Юнона будут ярче него на ночном небосводе. Для профессиональных наблюдений за планетой нужен телескоп с увеличительной способность от от 200× и более. Только с таким аппаратом можно рассмотреть голубоватый диск Нептуна, напоминающий Уран. В более простые приспособления, наприме, бинокль, Нептун будет визуализироваться, как неяркая звезда.

Ввиду значительного большого расстояния между Землей и Нептуном, его угловой диаметр изменялся лишь в пределе с 2,2 до 2,4 угл. сек. Данное значение является самым малым на фоне значений других планет Солнечной системы. Именно поэтому невооруженным глазом наблюдение за планетой невозможно. Ранее, когда ученые осуществляли исследования при помощи более примитивных приспособлений, точность большинства информации о Нептуне была низкой. Только с появлением космической машины «Хаббл» астрономы смогли получить достоверную информацию о восьмой планете Солнечной системы.

Что касается наземных наблюдений, то каждый 367-й день Нептун вступает в ретроградное движение. В следствие этого начинают образовываться иллюзорные петли, которые особенно заметы на фоне звезд в период каждого противостояния. В 2010 и 2011 года по данными петлями планеты была приведена к тем координатам, на которых она находилась во время открытия — в 1846 году.

Исследование Нептуна, проведенное в диапазоне радиоволн показало, что он систематически излучает вспышки. Это в какой-то мере объясняет принцип вращения магнитного поля Нептуна.

Исследования планеты Нептун

«Вояджер-2» смог приблизиться на максимальное расстояние к Нептуну в 1989 году. В процессе данной миссии космический аппарат также смог подойти и к Тритону. При сближении сигналы, посылаемые аппаратом, доходили зо Земли за 246 минут. В связи с этим, почти вся миссия «Вояджера-2» осуществлялась посредством заранее загруженных программ, предназначенных для управления во время сближения с Нептуном и его крупным спутником. Сначала «Вояджеру-2» удалось приблизиться к Нереиде, и только потом подойти к атмосфере планеты. После этого машина пролетела рядом с Тритоном.

«Вояджер-2» сумел подтвердить догадки ученых о существовании магнитного поля. В ходе данной миссии также удалось выяснить вопросы о наклоне орбиты. Путешествие машины к Нептуну также помогло узнать о его активной погодной системе. «Вояджером-2» было открыто 6 спутников и колец Нептуна. В 2016 году НАСА планировала новую миссию, которая называлась «Нептун Орбитер». Но сегодня о ее осуществлении руководители космического агентства даже не упоминают.

История о том, как было установлено местоположение планеты Нептун, необычна. Небесное тело обнаружили почти случайно, и произошло это сначала на бумаге — в результате математических расчетов. «Планета, открытая на кончике пера» — так называют Нептун некоторые ученые.

Первооткрывателем планеты Нептун мог бы быть Галилео Галилей, но он по ошибке принял её за звезду. Credit: ru.wikipedia.org.

История открытия восьмой планеты и наименования

Первым Нептун заметил Галилео Галилей еще в начале XVII в., но принял его за звезду. После 1612 г. планета начала удаляться от Земли, и обнаружить ее астрономической техникой тех времен стало невозможно.

В первой половине XIX в. английский ученый Т. Дж. Хасси высказал предположение, что имевшее место аномальное перемещение Урана по своей орбите может объясняться наличием рядом крупного космического объекта.

Через несколько лет французский астроном А. Бувар математическим путем смог определить орбитальную траекторию Урана, однако оптические наблюдения не подтвердили его расчеты. Это тоже могло значить, что рядом с планетой находится нечто, на нее влияющее.

К исследованиям приступило сразу несколько ученых. Новое небесное тело обнаружили, и на право называться первооткрывателем претендовали Дж. Адамс и У. Леверье. В 1846 г. этот спор был разрешен: оба астронома были официально признаны первыми.

Одновременная работа математиков Джона Куча Адамса (слева) и Урбена Жан Жозефа Леверье (справа) подарила миру открытие планеты Нептун в 1846 г. Credit: ru.wikipedia.org.

Но в самом конце ХХ в. ученые определили, что корректнее первооткрывателем восьмой планеты все-таки считать У. Леверье: его расчеты имели меньшую погрешность.

Небесное тело было названо в честь астронома, хотя другие исследователи настаивали на именах Океан или Янус. Сам Леверье дал восьмой планете Солнечной системе имя в честь римского бога морей — за синий цвет ее поверхности.

Что принесло науке открытие Нептуна

Открытие планеты Нептун подтвердило, что Солнечная система имеет гелиоцентрическое строение. Credit: NASA.

Открытие Нептуна не только объяснило орбитальное поведение Урана.

Оно также окончательно подтвердило справедливость гелиоцентрической теории строения Солнечной системы, которую высказал Н. Коперник.

Кроме того, была подтверждена справедливость теории всемирного тяготения И. Ньютона.

А также появились доказательства того, что небесные тела можно обнаружить благодаря предварительным математическим вычислениям, а не только непосредственному визуальному наблюдению.

Краткое описание и характеристики Нептуна

После того как Плутон был исключен из списка планет, Нептун стал по расположению самым дальним от Солнца объектом планетарного типа в нашей системе. Он находится на расстоянии в среднем 4,5 млрд км от Звезды, свет которой идет сюда больше 4 часов.

Высокая эксцентричность нептунианской орбиты (по вытянутости она уступает только венерианской) приводит к тому, что порой планета оказывается ближе к Солнцу, чем ее сосед Уран, а иногда — дальше, чем Плутон.

Нептун летит в пространстве со скоростью 5,5 км/с, проходя полностью один орбитальный круг почти за 165 земных лет. Очередной местный год начался там в июле 2011 г. Смена сезонов на Нептуне тоже есть, каждое время года длится примерно по 40 лет.

Между Землей и планетой в разные периоды от 4,3 до 4,6 млрд км. Это не дает возможности землянам увидеть планету невооруженным глазом: нужен телескоп с минимум 200-кратным увеличением и 250-миллиметровой линзой. При наблюдении Нептун будет выглядеть шаром синего цвета. Окраска объясняется большим содержанием в газовой оболочке метана.

Планета Нептун при наблюдении в очень мощный телескоп с Земли. Credit: Skyscrapers, Inc.

16 часов длится оборот гиганта вокруг своей оси, и столько же времени движется вместе с планетой ее магнитное поле. Атмосфера из-за отсутствия у объекта твердой поверхности ведет себя иначе. Около экватора газовая оболочка совершает 1 оборот за 18 часов, около полюсов — за 12. Это объясняет возникновение нептунианских ураганов, самых сильных в Солнечной системе. Их скорость может достигать 600 м/с.

Самый крупный зафиксированный вихрь — Большое темное пятно размером около 13х6,5 тыс. км (что сопоставимо с габаритами Земли). Скорость ветров на его границах достигала сверхзвуковой. Пятно постоянно меняло свои очертания. Не понятно, насколько долго этот вихрь бушевал на планете.

Структура планеты Нептун. Credit: universetoday.ru.

Обнаружен он был зондом «Вояджер-2» только в 1989 г. Не ясно и точное время его исчезновения — отсутствие урагана зафиксировал в 1994 г. космический телескоп «Хаббл» при попытке сфотографировать объект.

Основные физические характеристики Нептуна:

  • средний радиус — 24,6 тыс. км;
  • масса — 100 скстлн т (секстиллион — 10 в 21 степени);
  • средняя плотность тверди — 1,6 г/куб. см.

Среди всех планет Солнечной системы Нептун — третий по массе и четвертый по диаметру. Он тяжелее Земли в 17 раз и в 4 раза больше ее по длине экватора.

Строение Нептуна напоминает Уран. Верхнюю часть планеты (до 20% ее массы) занимает газовая оболочка, ниже — мантия из смеси жидких метана и аммиака. Ученые называют нептунианскую мантию ледяной, но со льдом ее роднит только высокая плотность. В действительности это скорее кипящий океан с температурой +1700…+4700°С. Ниже мантии расположено ядро из солей кремния и чистого железа. Температура здесь достигает +5500°С.

В верхних слоях атмосферы Нептуна находятся преимущественно водород (80%) и гелий (20%). По мере приближения к поверхности в воздухе увеличивается содержание метана, придающего небесному телу синий цвет. Привычное явление для нижних слоев газовой оболочки — сероводородные и аммиачные облака.

Кольцевая система Нептуна

Нептунианские кольца были обнаружены только через 120 лет после открытия самой планеты — в 1968 г. Сначала их наличие было только научным предположением. Окончательно подтвердил существование колец в 1989 г. корабль «Вояджер-2».

Количество колец — 5, они находятся на расстоянии 42-63 тыс. км и состоят из кремниевых солей и водяного льда, но красноватый оттенок выдает присутствие в них органических веществ.

Все эти образования названы в честь ученых, внесших свой вклад в изучение Нептуна:

  • Галле;
  • Леверье;
  • Ласселл;
  • Араго;
  • Адамс.

Последнее кольцо неоднородное, отличается наличием 5 отдельных дуг, каждая из которых имеет собственное название. Ученые пока не могут объяснить этот феномен. Возможно, объединиться дугам в единое целое не дает гравитация нептунианского ступника Галатеи, который вращается в непосредственной близости от этого кольца.

Спутник планеты Нептун Тритон отражает от 60% попадающего на него света, что минимум в 6 раз больше, чем отражает Луна. Credit: NASA.

Спутники синего гиганта

Нептун имеет 14 открытых на сегодня естественных лун, самая крупная из них — Тритон, обнаруженный через 2 недели после открытия самой планеты. Этот ледяной спутник со множеством действующих криовулканов единственный из соседей движется в ретроградном направлении.

Он постепенно сближается с центральной планетой и однажды разрушится, превратившись в шестое кольцо. Масса Тритона составляет примерно 99,5% от общего веса всех местных спутников.

Второй из нептунианских лун открыли Нереиду. Это случилось в 1949 г. До сих пор спутник остается одним из наименее изученных в Солнечной системе. Следующие 6 объектов обнаружила в 1989 г. станция «Вояджер-2». Последние мелкие сателлиты были открыты уже в XXI в.

Планета Нептун – загадка на окраине Солнечной системы

Планета Нептун — обитатель окраины нашей солнечной системы, максимальное удаление от Солнца и едва начатые исследования обеспечили Нептуну славу самой загадочной планеты нашей системы. Даже обнаружили ее не путем визуального наблюдения. Сначала астрономы высчитали орбиту и местонахождение теоретически. А ведь Нептун никак не назовешь «малышом» — это четвертая по величине диаметра и третья по массе планета. И это самая голубая в Солнечной системе планета, что обусловлено большим содержанием в атмосфере метана в соединении с неизвестным пока веществом. Учитывая еще и крайне неспокойный климат, частые и мощные бури, то название планеты очень характерно. Нептун — грозный и непредсказуемый бог таинственных морских глубин. Тайны и невероятные факты стали его фирменным знаком.

  • История открытия
  • Название
  • Характеристики планеты
  • Атмосфера и климат
  • Вращение и орбита
  • Спутники и кольца
  • Исследования
  • Необычные факты

История открытия

Орбита небесного тела является наиболее длинной. Полностью планета проделывает полный оборот вокруг светила за 164,79 земных лет. Такая неторопливость и сбила с толку великого Галилео Галилея, который впервые наблюдал небесное тело в 1612 году. Он счел его неподвижной звездой. Что и стоило ему славы первооткрывателя, а встреча с Нептуном задержалась почти на двести лет.

В 1821 году исследователь Урана Алексис Бувар обновлял астрономические таблицы его орбиты. Стало понятно, что имеются странные аномалии, вызвать которые могло только другое небесное тело, скорее всего — планета. Но более подробно к этому вопросу ученые не возвращались еще более 20-ти лет. В 1843 году английский астроном Джон Куч Адамс смог вычислить орбиту гипотетически существующей планеты. Его расчеты причин изменений орбиты Урана были отправлены королевскому астроному, но углубляться в новые исследования никто не стал.

Чуть позже расчеты произвел Урбен Леверье. Парижские коллеги не поддержали его. И только в июне 1846 года удалось убедить директора обсерватории в Кембридже начать поиски математически рассчитанной планеты. Два месяца велись наблюдения, но обработку результатов отложили, поэтому планету так и не идентифицировали.

В сентябре 1846 года Леверье обратился к берлинским астрономам. Ему помог студент, Генрих д’Арре, предложив сравнить карту Лаверье с актуальным небом. Только так можно было подтвердить движение небесного тела. Догадка подтвердилась при первом же наблюдении. Сам директор обсерватории Иоганн Энке Галле лично присутствовал при наблюдениях, убеждаясь — это действительно неизвестная ранее планета. Открытие Нептуна зарегистрировано 23 сентября 1846 года.

Британские и французские ученые еще долго оспаривали пальму первенства открытия Нептуна. В конце-концов решили поделить это право между Адамсом и Леверье. Но уже в 20-ом веке в архиве Гринвичской обсерватории нашлись документы, которые позволили историкам оспорить заслуги Адамса. Его расчеты были приблизительными, а отказ от дальнейших исследований позволяет назвать притязания британцев на равные права в открытии Нептуна настоящим воровством.

Название

Сначала планета вообще не имела названия, ее упоминали как «внешняя планета», «следующая за Ураном» либо просто как «планета Леверье». Галле, предложил назвать открытое небесное тело Янусом, английские астрономы — Океаном. Имя бога морей было предложено самим Леверье, хотя надеялся, что предпочтение отдадут «планете Леверье». Но такой вариант поддерживался только во Франции. Остальной научный мир единодушно присвоил планете имя «Нептун».

В астрономии Нептун обозначается символом — это стилизованный трезубец повелителя морей.

Характеристики планеты

Почти все известные данные о планете базируются на наблюдении через телескопы и данных астрономического зонда «Вояджер-2». Невооруженным глазом увидеть Нептун невозможно.

Планета относится к газовым гигантам, занимая среди них последнее, четвертое место. Но по плотности он лидер – 1,638 гр/см3. Радиус его в четыре раза больше земного и составляет 25000км. По общепринятой гипотезе планета представляет собой гигантский шар изо льда, скальных пород и газа. Лед, покрывающий Нептун, по массе в 17 раз превосходит массу Земли.

По строению предполагают его близким к Урану, это трехслойный сфероид. Поверхности, аналогичной земной или марсианской, Нептун не имеет. Изнутри раскален, снаружи очень холодный. По другой теории мантия ядра планеты составляет раскаленная алмазная жидкость. Внутренняя мантия — водный аммиак с метановым льдом. Ядро состоит в основном из железа и никеля.

Атмосфера и климат

Радиотелескоп «Хаббл» позволил определить, что атмосфера Нептуна имеет примерно 80% водорода, 19% гелия и 1% метана. Поэтому с Земли Нептун видится ярко-голубым. По яркости окраски он превосходит даже Уран, имеющего гораздо больше метана в атмосфере. Ученые предполагают, что метан Нептуна находится в соединении с неизвестным веществом. Облака вращаются в противоположную сторону от вращения самого небесного тела.

Планета слишком далека от Солнца, поэтому верхние слои атмосферы держится на уровне -221°С. При этом Нептун излучает тепла больше, чем получает от нашей звезды, почти в 2,5 раза.

По некоторым данным ядро Нептуна — второе Солнце, поэтому нагревается сердце планеты до +7000°С. Такие перепады температуры порождают невиданные по масштабам шторма.

Атмосфера Нептуна имеет широтные полосы. Все они крайне беспокойные — бури здесь обычное явление. В некоторых широтах ветер достигает скорости 600 км/сек. Бури (или «темные пятна») были зафиксированы «Вояджером-2». Он же передал данные об особо мощных ураганах, ветер в центре которых достигал 2100 км/сек. По масштабам они равны Большому красному пятну Юпитера, только длятся всего по несколько месяцев. Вихревые антициклоны появляются и в тропосфере (Большие и Малые темные пятна). Довольно часты здесь и всполохи северного сияния.

Необычным явлением на восьмой планете являются «белые шторма», которые называются «Скутер». Они намного меньше темных пятен, существуют еще более короткий период времени. Предполагают, что это своеобразные ливневые системы.

Вращение и орбита

Как уже говорилось, из-за самой протяженной орбиты нептунианский год длится 164,79 земных лет. В июле 2011 года как раз завершился один виток планеты вокруг светила.

Другие параметры планеты также удивительны и непонятны:

  • Ее ось наклонена всего на 28,32°, это довольно близко к показателю Земли. И, хотя он так далеко от Солнца», на нем имеется четко выраженная смена времен года. Происходит она один раз в 40 лет. Объяснить такую выраженную сезонность у самой отдаленной планеты ученые пока не могут
  • Удивительна и скорость вращения Нептуна вокруг своей оси. Полный оборот происходит за 16 часов. Это выше показателей «земной группы». Ночь при этом более продолжительна, чем день
  • Орбита восьмой планеты максимально близка по форме к кругу. Это объясняется тем, что эксцентриситет ее орбиты (0,0097) второй наименьший после Венеры. По этой орбите Нептун летит со второй космической скоростью (23,5 км/сек)
  • Гравитация Нептуна также близка к Земной (11,15 м/сек2).

Спутники и кольца

Как все известные газовые гиганты, Нептун имеет много спутников. На сегодняшний день их обнаружено тринадцать. Первый, самый крупный, Тритон, был обнаружен спустя год после открытия самого Нептуна. Но следующие спутники разглядели только в 20-том веке. Все они получили названия согласно именам мифологической свиты Нептуна.

Тритон достоин отдельного упоминания. Ученые не без основания считают, что это скорее всего бывшая карликовая планета, попавшая в зону гравитации Нептуна. Об этом говорит ретроградное (обратное) движение спутника по сравнению с другими. Он единственный из спутников имеет форму шара. Это настоящий мир льда, самое холодное место Солнечной системы, где температура опускается ниже -235°С. Сквозь лед на его поверхности постоянно происходят выбросы пыли и азота. Через несколько сотен миллионов лет Тритон притянется к Нептуну, разобьётся о его поверхность в пыль и станет еще одним кольцом.

Сегодня таких колец обнаружено шесть. Впервые их достоверно разглядели в 70-ых годах прошлого века. Им присвоили имена астрономов, который участвовал в открытии Нептуна — Леверье, Лассел, Галле, Аламс и Араго. Основными считают кольца Леверье, Адамса и Галле. Кольца Нептуна не столь явно выражены, поэтому их полноценное строение с помощью снимков с «Вояджера-2» в 1989 году. Кольца Нептуна содержат различный лед и углеродные частицы.

Исследования

До момента сближения «Вояджера-2» с орбитой Нептуна данных о планете практически не было. В августе 1989 году аппарат облетел планету, сделав серию снимков. Именно зонд помог обнаружить необычные особенности Тритона. Основной задачей аппарата было изучение магнитного поля планеты, наблюдение за спутниками, атмосферными явлениями, движением Нептуна по орбите.

Было выяснено, что ось планеты относительно магнитного поля имеет наклон в 47°, поэтому возникают колебания. По силе это магнитное поле в 27 раз сильнее земного. При движении полюса как бы описывают конусы.

Исследования затруднялись огромным расстоянием. Сигнал от аппарата достигал Земли только через четыре часа. Но великолепные снимки и данные о составе атмосферы сделали двенадцатилетнюю миссию «Вояджера-2» самой успешной в 20-ом веке.

Запуск спектрального телескопа «Хаббл» дали новые сведения о химическом составе атмосферы и о процессах в ней. Но следующие исследования пока откладывались. Новый зонд планируется запустить не ранее 20-тых годов нынешнего столетия. По предварительным данным этот посланец Земли будет возле Нептуна не ранее 2030-3035 года. Новая миссия должна изучить окраинные планеты и ближайшие районы космоса.

Открытие Нептуна увеличило размер нашей системы почти в два раза. Солнечному свету требуется 4 часа 40 минут, чтобы коснуться верхних слоев нептунианской атмосферы.

Необычные факты

Нептун вообще может претендовать на звание «Самой необычной планеты», по многим параметрам. Но есть несколько действительно уникальных фактов:

  • некоторые объекты Солнечной, системы из числа недавно обнаруженных, резонируют с Нептуном;
  • в честь планеты назван химический элемент нептуний, внесенный в периодическую таблицу под номером 93 в 1948 году;
  • некоторый период Нептун перестал считаться самой дальней планетой. Это произошло после открытия Плутона, но в 2006 году было принято новое толкование термина «планета», согласно которому Плутон перешел в разряд карликовых. После этого Нептун вновь стал последней планетой нашей системы;
  • не так давно на поверхности обнаружена «горячая точка», где температура выше на 10 градусов. Метан в ней испаряется в атмосферу намного быстрее. Объяснить ее образование ученые пока не в силах;
  • «Вояджер-2» обнаружил на поверхности криореки;
  • Тритон единственная луна в Солнечной системе, которая холоднее планеты-хозяина.

Представления о Нептуне еще полвека назад сильно отличались от сегодняшних. Расхождения были незначительными, но для астрономии расхождение даже в 50 минут в оценке периода вращения вокруг своей оси имеют огромное значение. «Вояджер-2» изменил представление о магнитном поле Нептуна. Возможно, в будущем земляне смогут узнать о космическом «морском боге» намного больше. Пока Нептун не спешит открывать человеку свои тайны.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *