Леонард эйлер биография

Достижения Леонарда Эйлера, великого швейцарского математика и физика изложены в этой статье.

Леонард Эйлер вклад в науку кратко

Леонард Эйлер достижения в математике получили признание еще при жизни математика. Кроме того, что он возглавлял кафедры Берлинской и Петербургской академий, Эйлер был членом Лондонского королевского общества и Парижской АН. Отличительной чертой ученого была его продуктивность. При жизни свет увидело больше 550 его статей и книг.

У Леонарда был довольно широкий круг занятий – он исследовал современную математику и механику, математическую физику, теорию упругости, оптику, теорию машин, теорию музыки, баллистику, страховое дело и морскую науку. Эйлер впервые сформулировал механический принцип малого действия и произвел его на практике. Ему принадлежит разработка динамики и кинематики твердого тела.

Леонард Эйлер что открыл?

Ученый совершил много открытий в разных областях науки. Исследуя небесную механику, он выдвинул теорию движения Луны, в области оптике Леонард сформулировал формулу двояковыпуклой линзы. Также предложил расчетный метод для вычисления показателей преломления среды. Рассчитал оптические узлы для микроскопа.

Много он уделял времени исследованиям колебания струны, мембраны и пластинки. Но главное достижение Леонардо Эйлера было совершено в области математики. Он разработал математический анализ и заложил фундамент для развития математических дисциплин. Математик был первым, кто ввел функцию комплексного аргумента и положил начало функции комплексного переменного.

Также он является создателем вариационного исчисления и вывел экстремум функционала. Ему принадлежат также следующие достижения – открытие классического способа решения линейных уравнений с постоянными коэффициентами, метода вариации произвольных, выделил основные свойства уравнения Риккати, он интегрировал линейные уравнения и создал приемы их решения, создал формулу суммирования Эйлера – Маклорена.

Эйлер является основателем теории специальных функций. Он был первым, кто стал рассматривать косинус и синус как функции и занялся исследованием свойств цилиндрических, гиперболических функций и эллиптических интегралов. Он применил впервые натуральные уравнения кривых и заложил фундамент основ теории поверхностей.

Леонард Эйлер вклад в математику отображен в его основных трудах: «Механика, или Наука о движении, изложенная аналитически», «Теория движения твёрдого тела», «Дифференциальное исчисление», «Введение в анализ», «Интегральное исчисление», «Универсальная арифметика», «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе…», «Механика».

Надеемся, что из этой статьи Вы узнали, каковы достижения швейцарского математика Леонарда Эйлера.

>Биография Леонарда Эйлера

К великому математику и блестящему физику Леонарду Эйлеру лучше всего подходит определение «гений».

Детство и ранние годы

Эйлер родился 15 апреля 1707 г. в г. Базель, в Швейцарии. Его отец, Пауль Эйлер, был пастором Реформатской церкви. Отец его матери, Маргарита Брукер, также был пастором. У Леонарда было две младшие сестры – Анна Мария и Мария Магдалена. Вскоре после рождения сына, семья переезжает в городок Риен. Отец мальчика был другом Иоганна Бернулли – известного европейского математика, оказавшего большое влияние на Леонарда. В тринадцать лет Эйлер-младший поступает в Базельский университет, и в 1723 г. получает степень магистра философии. В своей диссертации Эйлер сравнивает философии Ньютона и Декарта. Иоганн Бернулли, дававший мальчику по субботам частные уроки, быстро распознаёт выдающиеся способности мальчика к математике и убеждает его оставить раннюю теологию и сосредоточиться на математике.

В 1727 г. Эйлер принимает участие в конкурсе, организованном Парижской академии наук, на лучшую технику установки корабельных мачт. Леонард занимает второе место, в то время как первое достаётся Пьеру Бугеру, который впоследствии станет известен как «отец кораблестроения». Эйлер каждый год принимает участие в этом конкурсе, получив за свою жизнь двенадцать этих престижных наград.

Санкт-Петербург

17 мая 1727 г. Эйлер поступает на службу в медицинское отделение Императорской российской академии наук в Санкт-Петербурге, но почти сразу же переходит на математический факультет. Однако из-за волнений в России, 19 июня 1741 г. Эйлер переводится в Берлинскую академию. Там учёный прослужит около 25 лет, написав за это время более 380 научных статей. В 1755 г. его избирают иностранным членом Шведской королевской академии наук.

В начале 1760-х г.г. Эйлеру поступает предложение обучать наукам принцессу Анхальт-Дессау, которой учёный напишет более 200 писем, вошедших в ставший крайне популярным сборник «Письма Эйлера на разные предметы натуральной философии, адресованные немецкой принцессе». Книга не только наглядно демонстрирует способности учёного рассуждать на всевозможные темы в области математики и физики, но также является выражением его личных и религиозных взглядов. Интересно то, что эта книга известна лучше, чем все его математические труды. Она издавалась как в Европе, так и в Соединённых штатах Америки. Причиной такой популярности этих писем стала удивительная способность Эйлера в доступной форме доносить научные сведения до простого обывателя.

Уникальность этого труда состояла ещё и в том, что в 1735 г. учёный почти полностью ослеп на правый глаз, а в 1766 г. левый его глаз был поражён катарактой. Но, даже несмотря на это, он продолжает свои работы и в 1755 г. пишет в среднем по одной математической статье в неделю.

В 1766 г. Эйлер принимает предложение вернуться в Петербургскую академию, и остаток своей жизни проведёт в России. Однако его второй приезд в эту страну оказывается для него не столь удачным: в 1771 г. пожар уничтожает его дом, а, вслед за этим, в 1773 г. он теряет свою жену Катарину.

Личная жизнь

7 января 1734 г. Эйлер женится на Катарине Гзель. В 1773 г., после 40 лет семейной жизни, Катарина умирает. Спустя три года, Эйлер женится на её сводной сестре, Саломе Абигейл Гзель, с которой и проведёт остаток жизни.

Смерть и наследие

18 сентября 1783 г., после семейного обеда, у Эйлера случается кровоизлияние в мозг, после чего, спустя несколько часов, он умирает. Похоронили учёного на Смоленском лютеранском кладбище на Васильевском острове, рядом с его первой женой Катариной. В 1837 г. Российская академия наук поставила на могиле Леонарда Эйлера бюст на пьедестале, выполненном в форме ректорского кресла, рядом с могильным камнем. В 1956 г., к 250-летию со дня рождения учёного, памятник и останки были перенесены на кладбище XVIII века при монастыре Александра Невского.

В память о его огромном вкладе в науку, портрет Эйлера появился на швейцарских 10-франковых банкнотах шестой серии, а также на ряде российских, швейцарских и немецких марок. В его честь назван астероид «2002 Эйлер». 24 мая лютеранская церковь чтит его память по календарю святых, поскольку Эйлер был убеждённым приверженцем христианства и горячо верил в библейские заповеди.

Система математических обозначений

Среди всех разнообразных работ Эйлера самой заметной является представление теории функций. Он первым ввёл обозначение f(x) – функции “f” по аргументу “x”. Эйлер также определил математические обозначения для тригонометрических функций в том виде, в каком мы знаем их сейчас, ввёл литеру “e” для основания натурального логарифма (известную как «число Эйлера»), греческую букву “Σ” для итоговой суммы и букву “i” для определения мнимой единицы.

Анализ

Эйлер утвердил применение показательной функции и логарифмов в аналитических доказательствах. Он открыл способ разложения различных логарифмических функций в степенной ряд, а также успешно доказал применение логарифмов к отрицательным и комплексным числам. Таким образом, Эйлер значительно расширил математическое применение логарифмов.

Этот великий математик также подробно объяснил теорию высших трансцендентных функций и представил новаторский подход к решению квадратных уравнений. Он открыл технику расчёта интегралов с применением сложных пределов. Разработал он и формулу вариационного исчисления, получившую название «уравнение Эйлера-Лагранжа».

Теория чисел

Эйлер доказал малую теорему Ферма, тождества Ньютона, теорему Ферма о суммах двух квадратов, а также значительно продвинул доказательство теоремы Лагранжа о сумме четырёх квадратов. Он внёс ценные дополнения в теорию совершенных чисел, над которой с увлечением трудился не один математик.

Физика и астрономия

Заметный вклад внёс Эйлер в решение уравнения пучка Эйлера-Бернулли, ставшего одним из основных уравнений, применяемых в инженерном деле. Свои аналитические методы учёный применял не только в классической механике, но и в решении небесных задач. За свои достижения в области астрономии Эйлер получил многочисленные награды Парижской академии. Основываясь на знании истинной природы комет и рассчитав параллакс Солнца, учёный чётко вычислил орбиты комет и других небесных тел. С помощью этих расчётов были составлены точные таблицы небесных координат.

Оценка по биографии

Великие математики — Леонард Эйлер

Леонард Эйлер — известный математик, живший в 18 веке, который внес в эту науку огромный вклад. Большие ученые — интернациональны и своим ученым Эйлера считает Германия, Швейцария, а также и Россия. Эйлер является автором более чем 800 работ по математическому анализу, геометрии математической физике и другим. Но он изучал и другие науки, например физику, химию, музыку и множество языков.

Эйлер очень много времени провел в России и оказал на развитие математики в России большое влияние. Он отлично знал русский язык.
Сын пастора, готовившийся с детства к духовной карьере очень рано, еще в подростковом возрасте обратил на себя внимание профессора Иоганна Бернулли. Тот передал одаренному юноше математические статьи для изучения, помогая при этом в трудных и непонятных местах. Фактически, Иоганн Бернулли стал первым наставником Леонарда Эйлера и если не определил, то закрепил любовь юноши к математике. В то время юный гений написал свои первые научные работы по математике. а через некоторое время уехал в Россию.

Дело в том, что в Швейцарии — маленькой стране, где жил Леонард для получения “приличного”, например, профессорского места было слишком мало возможностей. Россия в те времена представляла огромный интерес для молодых ученых. И в 1727 году Эйлер получил место помощника профессора кафедры физиологии в Санкт-Петербургском университете.

Леонард Эйлер в России

Он прожил больше 10 лет в России, написал множество научных трудов, активно участвовал в становлении российской науки, но в 1741 году уехал в Пруссию. Это было связано с тем, что в России императором был объявлен Иоанн VI и обстановка в сфере науки ухудшилась. А через 20 лет, при восшествии на престол Екатерины II Эйлер снова возвращается в Россию уже до конца жизни.

Эйлер оставил очень важные работы по самым различным отраслям математики. Вообще, математики называют XVIII век — веком Эйлера.. Он впервые логически связал алгебру, геометрию,анализ, тригонометрию, теорию чисел в единую систему, и при этом сделал сам немало открытий.
Можно сказать, что именно он создал множество современных математических наук — теорию чисел, дифференциальную геометрию поверхностей и другие.При всем его таланте, друзья и современники Эйлера говорили о том, что это был человек дружелюбный, приветливый и очень скромный.

Сегодня в школе изучают «уравнение Эйлера», зная только фамилию. Но за ней скрывается целая человеческая жизнь талантливого неординарного человека.

Биография Леонарда Эйлера

За время существования Академии наук в России, видимо, одним из самых знаменитых ее членов был математик Леонард Эйлер.

Он стал первым, кто в своих работах стал возводить последовательное здание анализа бесконечно малых. Только после его исследований, изложенных в грандиозных томах его трилогии «Введение в анализ», «Дифференциальное исчисление» и «Интегральное исчисление», анализ стал вполне оформившейся наукой — одним из самых глубоких научных достижений человечества.

Леонард Эйлер родился в швейцарском городе Базеле 15 апреля 1707 года. Отец его, Павел Эйлер, был пастором в Рихене (близ Базеля) и имел некоторые познания в математике. Отец предназначал своего сына к духовной карьере, но сам, интересуясь математикой, преподавал ее и сыну, надеясь, что она ему впоследствии пригодится в качестве интересного и полезного занятия. По окончанию домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базель для слушания философии.

Портрет, выполненный Я. Э. Хандманном (1756)

Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.

Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли — Николаем и Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Эйлера.

В 1725 году братья Бернулли были приглашены в члены петербургской академии наук, недавно основанной императрицей Екатериной I. Уезжая, Бернулли обещали Леонарду известить его, если найдется и для него подходящее занятие в России. На следующий год они сообщили, что для Эйлера найдется место, но, однако, в качестве физиолога при медицинском отделении академии. Узнав об этом, Леонард немедленно записался в студенты медицины Базельского университета. Прилежно и успешно изучая науки медицинского факультета, Эйлер находит время и для математических занятий. За это время он написал напечатанную потом в 1727 году в Базеле диссертацию о распространении звука и исследование по вопросу о размещении мачт на корабле.

В Петербурге имелись самые благоприятные условия для расцвета гения Эйлера материальная обеспеченность, возможность заниматься любимым делом, наличие ежегодного журнала для публикации трудов. Здесь же работала самая большая тогда в мире группа специалистов в области математических наук, в которую входили Даниил Бернулли (его брат Николай скончался в 1726 году), разносторонний X. Гольдбах, с которым Эйлера связывали общие интересы к теории чисел и другим вопросам, автор работ по тригонометрии Ф. X. Майера, астроном и географ Ж. Н. Делиль, математик и физик Г. В. Крафт и другие. С этого времени Петербургская Академия стала одним из главных центров математики в мире.

Базельский университет в XVII—XVIII веках

Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д. Бернулли, возвратившийся в этом году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».

В 1735 году академии потребовалось выполнить весьма сложную работу по расчету траектории кометы. По мнению академиков, на это нужно было употребить несколько месяцев труда. Эйлер взялся выполнить это в три дня и исполнил работу, но вследствие этого заболел нервною горячкою с воспалением правого глаза, которого он и лишился. Вскоре после этого, в 1736 году, появились два тома его аналитической механики. Потребность в этой книге была большая; немало было написано статей по разным вопросам механики, но хорошего трактата по механике не имелось.

В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки. Затем в 1840 году Эйлер написал сочинение о приливах и отливах морей, увенчанное одной третью премии французской академии; две других трети были присуждены Даниилу Бернулли и Маклорену за сочинения на ту же тему.

Гравюра В. П. Соколова (1766), вероятно по рисунку 1737 г.

В конце 1740 года власть в России попала в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.

В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной королевской академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.

Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере сохраняется и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж, и таким образом сложилась новая наука.

История жизни Леонарда Эйлера

В 1744 году Эйлером напечатал в Берлине три сочинения о движении светил, первое — теория движения планет и комет, заключающая в себе изложение способа определения орбит из нескольких наблюдений; второе и третье — о движении комет.

Семьдесят пять работ Эйлер посвятил геометрии. Часть из них хотя и любопытна, но не очень важна. Некоторые же просто составили эпоху. Во-первых, Эйлера надо считать одним из зачинателей исследований по геометрии в пространстве вообще. Он первый дал связное изложение аналитической геометрии в пространстве (во «Введении в анализ») и, в частности, ввел так называемые углы Эйлера, позволяющие изучать повороты тела вокруг точки.

В работе 1752 года «Доказательство некоторых замечательных свойств, которым подчинены тела, ограниченные плоскими гранями», Эйлер нашел соотношение между числом вершин, ребер и граней многогранника сумма числа вершин и граней равна числу ребер плюс два. Такое соотношение предполагал еще Декарт, но Эйлер доказал его в своих мемуарах. Это в некотором смысле первая в истории математики крупная теорема топологии — самой глубокой части геометрии.

Портрет 1756 года, выполненный Эмануэлем Хандманном (Kunstmuseum, г. Базель)

Занимаясь вопросами о преломлении лучей света и написав немало мемуаров об этом предмете, Эйлер издал в 1762 году сочинение, в котором предлагается устройство сложных объективов с целью уменьшения хроматической аберрации. Английский художник Долдонд, открывший два различной преломляемости сорта стекла, следуя указаниям Эйлера, построил первые ахроматические объективы.

В 1765 году Эйлер написал сочинение, где решает дифференциальные уравнения вращения твердого тела, которые носят название Эйлеровых уравнений вращения твердого тела.

Много написал ученый сочинений об изгибе и колебании упругих стержней. Вопросы эта интересны не только в математическом, но и в практическом отношении.

Фридрих Великий давал ученому поручения чисто инженерного характера. Так, в 1749 году он поручил ему осмотреть канал Фуно между Гавелем и Одером и дать рекомендации по исправлению недостатков этого водного пути. Далее ему поручено было исправить водоснабжение в Сан-Суси.

Результатом этого стало более двадцати мемуаров по гидравлике, написанных Эйлером в разное время. Уравнения гидродинамики первого порядка с частными производными от проекций скорости, плотности к давлению называются гидродинамическими уравнениями Эйлера.

Покинув Петербург, Эйлер сохранил самую тесную связь с русской Академией наук, в том числе официальную он был назначен почетным членом, и ему была определена крупная ежегодная пенсия, а он, со своей стороны, взял на себя обязательства в отношении дальнейшего сотрудничества. Он закупал для нашей Академии книги, физические и астрономические приборы, подбирал в других странах сотрудников, сообщая подробнейшие характеристики возможных кандидатов, редактировал математический отдел академических записок, выступал как арбитр в научных спорах между петербургскими учеными, присылал темы для научных конкурсов, а также информацию о новых научных открытиях и т. д. В доме Эйлера в Берлине жили студенты из России М. Софронов, С. Котельников, С. Румовский, последние позднее стали академиками.

Фридрих II Прусский

Из Берлина Эйлер, в частности, вел переписку с Ломоносовым, в творчестве которого он высоко ценил счастливое сочетание теории с экспериментом. В 1747 году он дал блестящий отзыв о присланных ему на заключение статьях Ломоносова по физике и химии, чем немало разочаровал влиятельного академического чиновника Шумахера, крайне враждебно относившегося к Ломоносову.

В переписке Эйлера с его другом академиком Петербургской Академии наук Гольдбахом мы находим две знаменитые «задачи Гольдбаха» доказать, что всякое нечетное натуральное число есть сумма трех простых чисел, а всякое четное — двух. Первое из этих утверждений было при помощи весьма замечательного метода доказано уже в наше время (1937 год) академиком И. М. Виноградовым, а второе не доказано до сих пор.

Эйлера тянуло назад в Россию. В 1766 году он получил через посла в Берлине, князя Долгорукова, приглашение императрицы Екатерины II вернуться в академию наук на любых условиях. Несмотря на уговоры остаться, он принял приглашение и в июне прибыл в Петербург.

Императрица предоставила Эйлеру средства на покупку дома. Старший из его сыновей Иоганн Альбрехт стал академиком по физике, Карл занял высокую должность в медицинском ведомстве; Христофора, родившегося в Берлине, Фридрих II долго не отпускал с военной службы, и потребовалось вмешательство Екатерины II, чтобы тот смог приехать к отцу. Христофор был назначен директором Сестрорецкого оружейного завода.

Еще в 1738 году Эйлер ослеп на один глаз, а в 1771-м после операции почти совсем потерял зрение и мог писать только мелом на черной доске, но благодаря ученикам и помощникам И.А. Эйлеру, А.И. Локселю, В.Л. Крафту, С.К. Котельникову, М.Е. Головину, а главное Н.И. Фуссу, прибывшему из Базеля, продолжал работать не менее интенсивно, чем раньше.

Здание Петербургской Академии наук во второй половине XVIII века (Кунсткамера)

Эйлер, при своих гениальных способностях и замечательной памяти, продолжал работать, диктовать свои новые мемуары. Только с 1769 по 1783 годы Эйлер продиктовал около 380 статей и сочинений, а за свою жизнь написал около 900 научных работ.

Работа 1769 года «Об ортогональных траекториях» Эйлера содержит блестящие соображения о получении с помощью функции комплексной переменной из уравнений двух взаимно ортогональных семейств кривых на поверхности (т. е. таких линий, как меридианы и параллели на сфере) бесконечного числа других взаимно ортогональных семейств. Работа эта в истории математики оказалась очень важной.

В следующей работе 1771 года «О телах, поверхность которых может быть развернута в плоскость» Эйлер доказывает знаменитую теорему о том, что любая поверхность, которую можно получить, лишь изгибая плоскость, но не растягивая ее и не сжимая, если она не коническая и не цилиндрическая, представляет собой совокупность касательных к некоторой пространственной кривой.

Столь же замечательны работы Эйлера по картографическим проекциям.

Можно себе представить, каким откровением для математиков той эпохи явились хотя бы работы Эйлера о кривизне поверхностей и о развертывающихся поверхностях. Работы же, в которых Эйлер исследует отображения поверхности, сохраняющие подобие в малом (конформные отображения), основанные на теории функций комплексного переменного, должны были казаться прямо-таки трансцендентными. А работа о многогранниках начинала совсем новую часть геометрии и по своей принципиальности и глубине стояла в ряду с открытиями Евклида.

Неутомимость и настойчивость в научных исследованиях Эйлера были таковы, что в 1773 году, когда сгорел его дом и погибло почти все имущество его семейства, он и после этого несчастья продолжал диктовать свои исследования. Вскоре после пожара искусный окулист, барон Вентцель, произвел операцию снятия катаракты, но Эйлер не выдержал надлежащего времени без чтения и ослеп окончательно.

«Письма к немецкой принцессе», третье издание (1780)

В том же 1773 году умерла жена Эйлера, с которой он прожил сорок лет. Через три года он вступил в брак с ее сестрой, Саломеей Гзелль. Завидное здоровье и счастливый характер помогали Эйлеру «противостоять ударам судьбы, которые выпали на его долю… Всегда ровное настроение, мягкая и естественная бодрость, какая-то добродушная насмешливость, умение наивно и забавно рассказывать делали разговор с ним столь же приятным, сколь и желанным…» Он мог иногда вспылить, но «был не способен долго питать против кого-либо злобу…» — вспоминал Н.И. Фусс.

Эйлера постоянно окружали многочисленные внуки, часто на руках у него сидел ребенок, а на шее лежала кошка. Он сам занимался с детьми математикой. И все это не мешало ему работать!

18 сентября 1783 года Эйлер скончался от апоплексического удара в присутствии своих помощников профессоров Крафта и Лекселя. Он был похоронен на Смоленском лютеранском кладбище. Академия заказала известному скульптору Ж.Д. Рашетту, хорошо знавшему Эйлера, мраморный бюст покойного, а княгиня Дашкова подарила мраморный пьедестал.

До конца XVIII века конференц-секретарем академии оставался И.А. Эйлер, которого сменил Н.И. Фусс, женившийся на дочери последнего, а в 1826 году — сын Фусса Павел Николаевич, так что организационной стороной жизни Академии около ста лет ведали потомки Леонарда Эйлера. Эйлеровские традиции оказали сильное влияние и на учеников Чебышева А.М. Ляпунова, А.Н. Коркина, Е.И. Золотарева, А.А. Маркова и других, определив основные черты петербургской математической школы.

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

Эйлер нашел доказательства всех теорем Ферма, показал неверность одной из них, а знаменитую Великую теорему Ферма доказал для «трех» и «четырех». Он также доказал, что всякое простое число вида 4п+1 всегда разлагается на сумму квадратов других двух чисел. Эйлер начал последовательно строить элементарную теорию чисел. Начав с теории степенных вычетов, он затем занялся квадратичными вычетами. Это так называемый квадратичный закон взаимности. Эйлер также много лет занимался решением неопределенных уравнений второй степени с двумя неизвестными.

Надгробие Л. Эйлера, гранитный саркофаг

Во всех этих трех фундаментальных вопросах, которые больше двух столетий после Эйлера и составляли основной объем элементарной теории чисел, ученый ушел очень далеко, однако во всех трех его постигла неудача. Полное доказательство получили Гаусс и Лагранж.

Эйлеру принадлежит инициатива создания и второй части теории чисел — аналитической теории чисел, в которой глубочайшие тайны целых чисел, например, распределение простых чисел в ряду всех натуральных чисел, получаются из рассмотрения свойств некоторых аналитических функций.

Созданная Эйлером аналитическая теория чисел продолжает развиваться и в наши дни.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *