Млечный путь черная дыра

Может ли Млечный Путь стать квазаром?

В центре нашей галактики Млечный Путь расположена сверхмассивная черная дыра. Может ли эта черная дыра стать квазаром? Для начала давайте освежим в памяти, что такое квазар. Квазар — это то, что получается, когда сверхмассивная черная дыра активно поглощает материал в ядре галактики. Область вокруг черной дыры становится чрезвычайно горячей и испускает яркую радиацию, который мы можем видеть за миллиарды световых лет.

Наш Млечный Путь — это галактика и, как и все галактики, обладает сверхмассивной черной дырой в центре. Может ли эта черная дыра переесть и стать квазаром? Квазары, стоит отметить, весьма редкие события в жизни галактик и происходят, как правило, на ранних этапах эволюции галактики, когда она молода и заполнена газом.

Обычно материал в галактическом диске вращается далеко от сверхмассивной черной дыры, и ему катастрофически не хватает материала. Иногда облако газа или бродячая звезда оказывается слишком близко, его или ее разрывает на части и мы видим короткую вспышку в процессе кормления черной дыры. Но вы не получите квазар, когда черная дыра перекусит звездой. Вам нужно невероятно большое количество материала, скормить дыре много газа, пыли, планет и звезд. Диск аккреции растет; закрученный водоворот материала становится больше нашей Солнечной системы, его температура сравнима со звездной. Этот диск порождает яркий квазар, а не сама черная дыра.

Квазары могут появляться один раз в жизни галактики. И если это происходит, квазар живет всего несколько миллионов лет, пока черная дыра поглощает весь доступный материал, подобно сливному отверстию вашего умывальника. После того как черная дыра все поглощает, диск аккреции исчезает, а свет квазара выключается, официанты уносят пустые блюда.

Звучит жутковато, на самом деле. По мнению ученого Нью-Йоркского университета Гейба Переса-Гиза, хотя квазар может излучать в 100 триллионов раз больше энергии, чем Солнце, мы находимся достаточно далеко от центра Млечного Пути и получим крайне мало света — возможно, одну сотую процента от интенсивности нашего светила.

Поскольку Млечный Путь — галактика среднего возраста, его квазаровые дни, вероятно, уже прошли. Однако вперед грядет мощное событие, которое может породить такую вспышку. Через 4 миллиарда лет Андромеда столкнется с Млечным Путем, поколебав ядра обеих галактик. Во время этого колоссального события, сверхмассивные черные дыры в двух галактиках будут взаимодействовать, путать орбиты звезд, планет, газ и пыль.

Что-то будет выброшено в космос, другое — разорвано и скормлено черным дырам. И если материала хватит, возможно, наш Млечный Путь снова станет квазаром. Что опять же будет совершенно безобидно для нас. Что касается столкновения галактик, то это уже другая история.

Вполне вероятно, что наш Млечный Путь уже был квазаром миллиарды лет назад. И может стать им снова через миллиарды лет. Это достаточно интересное событие, чтобы собраться и ждать его. Всего-то каких-то четыре миллиарда лет. Возможно, бессмертие поможет нам дожить до этого дня.

В Млечном Пути нашли микроквазар с мощнейшим гамма-излучением

Микроквазарами называют двойные звездные системы, состоящие из компактной черной дыры или нейтронной звезды и обычной звезды. Вещество со второго объекта «перетекает» на первый, обладающий более сильной гравитацией. Этот процесс сопровождается выбросами струй материи с околосветовой скоростью — джетов. Принцип действия похож на то, что происходит с квазарами. Отличие в том, что последние находятся в центрах галактик и содержат сверхмассивную черную дыру. Впервые микроквазаром назвали самый сильный источник рентгеновского излучения, видимый с Земли, — Скорпион X-1.

Ученые из Мичиганского технологического университета обнаружили такой объект в Млечном Пути. Он называется SS 433 и находится на расстоянии 15 тысяч световых лет от Земли. Характер взаимодействия компонентов микроквазара ученые описали в статье для журнала Nature.

Гамма-излучение, которое испускает SS 443, относится к одним из наиболее мощных, которые можно наблюдать с Земли. Оно в 25 триллионов раз мощнее, чем видимый свет от Солнца. Излучение зафиксировали в Высотной водной черенковской гамма-обсерватории (HAWS) в Мексике. Обычно фотоны с такими энергиями рождаются исключительно в экстремальных условиях, например в квазаре, в центрах других галактик. Однако инструменты обсерватории определили, что излучение исходит от известного объекта в Галактике — SS 433.

Обсерватория HAWS / ©HAWS

SS 433 ученые изучают еще с 1980-х, но до сих пор не могли зафиксировать столь мощное гамма-излучение от него. Это сделали возможным инструменты обсерватории HAWS, которые начали собирать данные в 2015 году. Астрофизики предполагают, что система SS 433 состоит из двух компонентов: маленькой черной дыры и ее соседки — обычной звезды. Вещество со звезды образует аккреционный диск у черной дыры, и вся эта система периодически выбрасывает мощные джеты в противоположных направлениях.

Ученые определили, что гамма-излучение генерировалось электронами с энергией в тысячу раз больше, чем у электронов, разгоняемых на Большом адронном коллайдере. Ранее астрофизикам был неизвестен этот механизм образования гамма-лучей высокой энергии в таких системах.

Исследователи надеются, что изучение гамма-излучения от микроквазара SS 433 может дать представление о физических процессах, происходящих в квазарах. Их достаточно сложно исследовать из-за того, что джеты, испускаемые ими, направлены прямо на Землю. А вот струи SS 433 наблюдаются инструментами HAWS как бы сбоку, что упрощает изучение.

Сверхмассивная чёрная дыра

Изображение тени сверхмассивной чёрной дыры в ядре галактики M 87, полученное в радиодиапазоне, с помощью Event Horizon Telescope (2019).Сверху: сверхмассивная чёрная дыра, поглощающая звезду, в представлении художника. Снизу: изображения, предположительно показывающие сверхмассивную чёрную дыру в галактике RXJ 1242-11. Слева: в рентгеновском излучении. Справа: в оптическом диапазоне.

Сверхмасси́вная чёрная дыра́ — это чёрная дыра с массой 105—1011 масс Солнца. Сверхмассивные чёрные дыры обнаружены в центре многих галактик, включая Млечный Путь.

Специфические свойства

Сверхмассивные чёрные дыры имеют специфические свойства, отличающие их от меньших чёрных дыр:

  • Парадоксально, но средняя плотность сверхмассивной чёрной дыры (вычисляемая путём деления массы чёрной дыры на её объём Шварцшильда) может быть очень мала (даже меньше плотности воздуха). Это объясняется тем, что радиус Шварцшильда прямо пропорционален массе, а плотность — обратно пропорциональна объёму (то есть в данном случае плотность обратно пропорциональна радиусу Шварцшильда). Так как объём сферического объекта (например, горизонта событий невращающейся чёрной дыры) прямо пропорционален кубу радиуса. В результате средняя плотность чёрной дыры уменьшается с увеличением её массы:

ρ = 3 c 6 32 π M 2 G 3 . {\displaystyle \rho ={\frac {3\,c^{6}}{32\pi M^{2}G^{3}}}.}

  • Приливные силы около горизонта событий значительно слабее из-за того, что центральная сингулярность расположена так далеко от горизонта, что гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует воздействия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.

Формирование

Сверхмассивная чёрная дыра и её аккреционный диск в представлении художника.

Общепринятой теории образования чёрных дыр такой массы ещё нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы чёрной дыры аккрецией вещества на чёрную дыру звёздной массы. Другая гипотеза предполагает, что сверхмассивные чёрные дыры образуются при коллапсе больших газовых облаков и при их превращении в релятивистскую звезду массой в несколько сотен тысяч солнечных масс или больше. Такая звезда быстро становится нестабильной к радиальным возмущениям в связи с процессами образования электронно-позитронных пар, происходящими в её ядре, и может сколлапсировать сразу в чёрную дыру. При этом коллапс идёт минуя стадию сверхновой, при которой взрыв разбросал бы большую часть массы, не позволив образоваться сверхмассивной чёрной дыре. Ещё одна модель предполагает, что сверхмассивные чёрные дыры могли образоваться в результате коллапса плотных звёздных кластеров, когда отрицательная теплоёмкость системы приводит дисперсию скорости в ядре к релятивистским значениям. Наконец, первичные чёрные дыры могли образоваться из начальных возмущений сразу после Большого взрыва.

Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме. Для этого у материи должен быть очень малый начальный угловой момент — то есть медленное вращение. Обычно скорость аккреции на чёрную дыру ограничена именно угловым моментом падающей материи, который должен быть в основном передан обратно наружу, что и ограничивает скорость роста массы чёрной дыры (см. аккреционный диск).

В наблюдаемом списке кандидатов в чёрные дыры есть провал в распределении масс. Есть чёрные дыры звёздных масс, образующиеся в результате коллапса звёзд, массы которых простираются, вероятно, до 33 солнечных масс. Минимальная же масса сверхмассивных чёрных дыр лежит в районе 105 солнечных масс (при максимальном значении — не более 5·1010 солнечных масс). Самая массивная из обнаруженных черных дыр SDSS J140821.67+025733.2 имеет массу 1.96 1011 солнечных масс. Между этими значениями должны лежать чёрные дыры промежуточных масс, но такая чёрная дыра (HLX-1, обнаруженная австралийским радиотелескопом CSIRO 9 июля 2012 года) пока известна лишь в единственном экземпляре, что является аргументом в пользу различных механизмов образования лёгких и тяжёлых чёрных дыр. Некоторые астрофизические модели, однако, объясняют характерные особенности сверхъярких рентгеновских источников, как содержащих именно такие чёрные дыры (промежуточных масс).

Обнаружение сверхмассивных чёрных дыр

В настоящее время единственный достоверный способ отличить чёрную дыру от объекта другого типа состоит в том, чтобы измерить массу и размеры объекта и сравнить его радиус с гравитационным радиусом, который задаётся формулой

R g = 2 G M c 2 {\displaystyle \ R_{g}={2GM \over c^{2}}} ,

где G {\displaystyle \ G} — гравитационная постоянная, M {\displaystyle \ M} — масса объекта, c {\displaystyle \ c} — скорость света.

К сожалению, сегодня разрешающая способность телескопов недостаточна для того, чтобы различать области пространства размером порядка гравитационного радиуса чёрной дыры. Поэтому в идентификации сверхмассивных чёрных дыр есть определённая степень допущения. Считается, что установленный верхний предел размеров этих объектов недостаточен, чтобы рассматривать их как скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы.

Существует множество способов определить массу и ориентировочные размеры сверхмассивного тела, однако большинство из них основано на измерении характеристик орбит вращающихся вокруг них объектов (звёзд, радиоисточников, газовых дисков). В самом простейшем и достаточно часто встречающемся случае обращение происходит по кеплеровским орбитам, о чём говорит пропорциональность скорости вращения спутника квадратному корню из большой полуоси орбиты:

V = G M r {\displaystyle \ V={\sqrt {GM \over r}}} .

В этом случае масса центрального тела находится по известной формуле

M = V 2 r G {\displaystyle \ M={V^{2}r \over G}} .

В ряде случаев, когда объекты-спутники представляют собой сплошную среду (газовый диск, плотное звёздное скопление), которая своим тяготением влияет на характеристики орбиты, радиальное распределение массы в ядре галактики получается путём решения т. н. бесстолкновительного уравнения Бернулли.

Метод отношения масса-светимость

Основным методом поиска сверхмассивных чёрных дыр в настоящее время является исследование распределения яркости и скорости движения звёзд в зависимости от расстояния до центра галактики. Распределение яркости снимается фотометрическими методами при фотографировании галактик с большим разрешением, скорости звёзд — по красному смещению и уширению линий поглощения в спектре звезды.

Имея распределение скорости звёзд V ( r ) {\displaystyle \ V(r)} можно найти радиальное распределение масс M ( r ) {\displaystyle \ M(r)} в галактике. Например, при эллиптической симметрии поля скоростей решение уравнения Бернулли даёт следующий результат:

где V {\displaystyle \ V} — скорость вращения, σ r , σ θ {\displaystyle \ \sigma _{r},\,\,\sigma _{\theta }} и σ ϕ {\displaystyle \ \sigma _{\phi }} — радиальная и азимутальные проекции дисперсии скорости, G {\displaystyle \ G} — гравитационная постоянная, ν {\displaystyle \ \nu } — плотность звёздного вещества, которая обычно принимается пропорциональной светимости.

Поскольку чёрная дыра имеет большую массу при низкой светимости, одним из признаков наличия в центре галактики сверхмассивной чёрной дыры может служить высокое отношение массы к светимости M / L {\displaystyle \ M/L} для ядра галактики. Плотное скопление обычных звёзд имеет отношение M / L {\displaystyle \ M/L} порядка единицы (масса и светимость выражаются в массах и светимостях солнца), поэтому значения M / L >> 1 {\displaystyle \ M/L>>1} (для некоторых галактик M / L > 1000 {\displaystyle \ M/L>1000} ), являются признаком наличия сверхмассивной чёрной дыры. Возможны, однако, альтернативные объяснения этого феномена: скопления белых или коричневых карликов, нейтронных звёзд, чёрных дыр обычной массы.

Измерение скорости вращения газа

В последнее время благодаря повышению разрешающей способности телескопов стало возможным наблюдать и измерять скорости движения отдельных объектов в непосредственной близости от центра галактик. Так, при помощи спектрографа FOS (Faint Object Spectrograph) космического телескопа «Хаббл» группой под руководством Х. Форда была обнаружена вращающаяся газовая структура в центре галактики M87. Скорость вращения газа на расстоянии около 60 световых лет от центра галактики составила 550 км/с, что соответствует кеплеровской орбите с массой центрального тела порядка 3⋅109 масс солнца. Несмотря на гигантскую массу центрального объекта, нельзя сказать с полной определённостью, что он является чёрной дырой, поскольку гравитационный радиус такой чёрной дыры составляет около 0,001 светового года.

Измерение скорости микроволновых источников

В 1995 году группа под руководством Дж. Морана наблюдала точечные микроволновые источники, вращающиеся в непосредственной близости от центра галактики NGС 4258. Наблюдения проводились при помощи радиоинтерферометра, включавшего сеть наземных радиотелескопов, что позволило наблюдать центр галактики с угловым разрешением 0,001″. Всего было обнаружено 17 компактных источников, расположенных в дискообразной структуре радиусом около 10 световых лет. Источники вращались в соответствии с кеплеровским законом (скорость вращения обратно пропорциональна квадратному корню из расстояния), откуда масса центрального объекта была оценена как 4⋅107 масс солнца, а верхний предел радиуса ядра — 0,04 светового года.

Наблюдение траекторий отдельных звёзд

В 1993—1996 годах А. Экарт и Р. Генцель наблюдали движение отдельных звёзд в окрестностях центра нашей Галактики. Наблюдения проводились в инфракрасных лучах, для которых слой космической пыли вблизи ядра галактики не является препятствием. В результате удалось точно измерить параметры движения 39 звёзд, находящихся на расстоянии от 0,13 до 1,3 светового года от центра галактики. Было установлено, что движение звёзд соответствует кеплеровскому, центральное тело массой 2,5⋅106 масс солнца и радиусом не более 0,05 светового года соответствует положению компактного радиоисточника Стрелец-А (Sgr A).

Сверхмассивная чёрная дыра в центре Млечного пути

Масса сверхмассивной чёрной дыры по разным оценкам составляет от двух до пяти миллионов солнечных масс.

См. также: Стрелец A*

Наблюдения в радиодиапазоне

Долгое время центр нашей Галактики, приблизительное положение которого (созвездие Стрельца) было известно по оптическим наблюдениям, не был ассоциирован ни с каким компактным астрономическим объектом. Только в 1960 году Дж. Оорт и Г. Рогур установили, что в непосредственной близости (менее 0,03°) от галактического центра находится радиоисточник Стрелец A* (Sgr A). В 1966 году Д. Даунс и А. Максвелл, обобщив данные по радионаблюдениям в дециметровом и сантиметровом диапазонах, пришли к выводу, что малое ядро Галактики представляет собой объект диаметром 10 пк, связанный с источником Стрелец-А.

К началу 1970-х годов благодаря наблюдениям в радиоволновом диапазоне было известно, что радиоисточник Стрелец-А имеет сложную пространственную структуру. В 1971 году Даунс и Мартин, проводя наблюдения на Кембриджском радиотелескопе с базой 1,6 км на частотах 2,7 и 5 ГГц с разрешением около 10’, выяснили, что радиоисточник состоит из двух диффузных облаков, находящихся на расстоянии 1’ друг от друга: восточная часть (Sgr A) излучает радиоволновой спектр нетермической природы, а западная (Sgr A*) представляет собой радиоизлучающее облако горячего ионизированного газа диаметром около 45″ (1,8 пк). В 1974 году Б. Балик и С. Сандерс провели на 43-метровом радиотелескопе Национальной радиоастрономической обсерватории (NRAO) картографирование радиоисточника Стрелец-А на частотах 2,7 и 8,1 ГГц с разрешением 2″. Было обнаружено, что оба радиоисточника представляют собой компактные образования диаметром менее 10″ (0,4 пк), окружённые облаками горячего газа.

Начало наблюдений в инфракрасном диапазоне

Вплоть до конца 1960-х годов не существовало эффективных инструментов для изучения центральных областей Галактики, поскольку плотные облака космической пыли, закрывающие от наблюдателя галактическое ядро, полностью поглощают идущее из ядра видимое излучение и значительно осложняют работу в радиодиапазоне.

Ситуация коренным образом изменилась благодаря развитию инфракрасной астрономии, для которой космическая пыль практически прозрачна. Ещё в 1947 году Стеббинс и А. Уитфорд, используя фотоэлемент, сканировали галактический экватор на длине волны 1,03 мкм, однако не обнаружили дискретного инфракрасного источника. В. И. Мороз в 1961 году провёл аналогичное сканирование окрестностей Sgr A на волне 1,7 мкм и тоже потерпел неудачу.. В 1966 году Е. Беклин сканировал район Sgr A в диапазоне 2,0-2,4 мкм и впервые обнаружил источник, по положению и размерам соответствовавший радиоисточнику Стрелец-А.

В 1968 году Е. Беклин и Г. Нейгебауэр провели сканирование для длин волн 1,65, 2,2 и 3,4 мкм с разрешением 0,08—1,8″ и обнаружили объект сложной структуры, состоявший из основного инфракрасного источника диаметром 5′, компактного объекта внутри него, расширенной фоновой области и нескольких компактных звездообразных источников в непосредственной близости от основного источника.

В середине 1970-х годов начинается исследование динамических характеристик наблюдаемых объектов. В 1976 году Е. Воллман спектральными методами (использовалась линия излучения неона Ne II с длиной волны 12,8 мкм) исследовал скорость движения газов, в области диаметром 0,8 пс вокруг галактического центра. Наблюдения показали симметричное движение газа со скоростями около 75 км/c. По полученным данным Воллман предпринял одну из первых попыток оценить массу объекта, предположительно находящегося в центре галактики. Полученный им верхний предел массы оказался равным 4⋅106 масс Солнца.

Обнаружение компактных инфракрасных источников

Дальнейшее увеличение разрешающей способности телескопов позволило выделить в газовом облаке, окружающем центр Галактики, несколько компактных инфракрасных источников. В 1975 году Е. Беклин и Г. Нейгебауэр составили инфракрасную карту центра Галактики для длин волн 2,2 и 10 мкм с разрешением 2,5″, на которой выделили 20 обособленных источников, получивших название IRS1—IRS20. Четыре из них (1, 2, 3, 5) позиционно совпали с известными по радионаблюдениям компонентами радиоисточника Sgr A. Природа выделенных источников долгое время обсуждалась. Один из них (IRS 7) идентифицирован как молодая звезда-сверхгигант, несколько других — как молодые гиганты. IRS 16 оказался очень плотным (106 масс Солнца на кубический парсек) скоплением звёзд-гигантов и карликов. Остальные источники предположительно являлись компактными облаками H II и планетарными туманностями, в некоторых из которых присутствовали звёздные компоненты. Продольная скорость отдельных источников лежала в пределах ±260 км/c, диаметр составлял 0,1—0,45 пк, масса 0,1—10 масс Солнца, расстояние от центра Галактики 0,05—1,6 пк. Масса центрального объекта оценивалась как 3⋅106 масс Солнца, таким же был порядок массы, распределённой в области радиусом 1 пк вокруг центра. Поскольку вероятная ошибка при вычислении масс была того же порядка, допускалась возможность отсутствия центрального тела, при этом распределённая в радиусе 1 пк масса оценивалась как 0,8—1,6⋅107 масс Солнца.

Последующее десятилетие характеризовалось постепенным ростом разрешающей способности оптических приборов и выявлением всё более подробной структуры инфракрасных источников. К 1985 году стало ясно, что наиболее вероятным местом нахождения центральной чёрной дыры является источник, обозначенный как IRS 16. Были обнаружены также два мощных потока ионизированного газа, один из которых вращался по круговой орбите на расстоянии 1,7 пк от центра Галактики, а второй — по параболической на расстоянии 0,5 пк. Масса центрального тела, рассчитанная по скорости этих потоков составила 4,7⋅106 масс Солнца по первому потоку и 3,5⋅106 масс Солнца по второму.

Наблюдение отдельных звёзд

Звёзды в пределах ±0,5″ от центра Галактики (рисунок)Траектории звёзд, ближайших к центру Галактики по данным наблюдений 1995—2003 годов

Данные в этой статье приведены по состоянию на 2009 год. Вы можете помочь, обновив информацию в статье.

В 1991 году вступил в строй инфракрасный матричный детектор Sharp I на 3,5-метровом телескопе Европейской южной обсерватории (ESO) в Ла-Силла (Чили). Камера диапазона 1—2,5 мкм обеспечивала разрешение 50 угловых мкс на 1 пиксель матрицы. Кроме того, был установлен 3D-спектрометр на 2,2-метровом телескопе той же обсерватории.

С появлением инфракрасных детекторов высокого разрешения стало возможным наблюдать в центральных областях галактики отдельные звёзды. Изучение их спектральных характеристик показало, что большинство из них относятся к молодым звёздам возрастом несколько миллионов лет. Вопреки ранее принятым взглядам, было установлено, что в окрестностях сверхмассивной чёрной дыры активно идёт процесс звездообразования. Полагают, что источником газа для этого процесса являются два плоских аккреционных газовых кольца, обнаруженных в центре Галактики в 1980-х годах. Однако внутренний диаметр этих колец слишком велик, чтобы объяснить процесс звездообразования в непосредственной близости от чёрной дыры. Звёзды, находящиеся в радиусе 1″ от чёрной дыры (так называемые «S-звёзды») имеют случайное направление орбитальных моментов, что противоречит аккреционному сценарию их возникновения. Предполагается, что это горячие ядра красных гигантов, которые образовались в отдалённых районах Галактики, а затем мигрировали в центральную зону, где их внешние оболочки были сорваны приливными силами чёрной дыры.

К 1996 году были известны более 600 звёзд в области диаметром около парсека (25″) вокруг радиоисточника Стрелец А*, а для 220 из них были надёжно определены радиальные скорости. Оценка массы центрального тела составляла 2—3⋅106 масс Солнца, радиуса — 0,2 светового года.

По состоянию на октябрь 2009 года разрешающая способность инфракрасных детекторов достигла 0,0003″ (что на расстоянии 8 кпк соответствует 2,5 а. е.). Число звёзд в пределах 1 пк от центра Галактики, для которых измерены параметры движения, превысило 6000.

Рассчитаны точные орбиты для ближайших к центру Галактики 28 звёзд, наиболее интересной среди которых является звезда S2. За время наблюдений (1992—2007), она сделала полный оборот вокруг чёрной дыры, что позволило с большой точностью оценить параметры её орбиты. Период обращения S2 составляет 15,8±0,11 лет, большая полуось орбиты 0,123±0,001″ (1000 а. е.), эксцентриситет 0,880±0,003, максимальное приближение к центральному телу 0,015″ или 120 а. е. Точное измерение параметров орбиты S2, которая оказалась близкой к кеплеровской, позволило с высокой точностью оценить массу центрального тела. По последним оценкам она равна

( 4.31 ± 0.06 ∣ s t a t ± 0.36 ∣ R 0 ) × 10 6 M ⊙ , {\displaystyle \ (4.31\pm 0.06\mid _{stat}\pm \,0.36\mid _{R_{0}})\times 10^{6}M_{\odot },}

где ошибка 0,06 вызвана погрешностью измерения параметров орбиты звезды S2, а ошибка 0,36 — погрешностью измерения расстояния от Солнца до центра Галактики.

Наиболее точные современные оценки расстояния до центра галактики дают:

R 0 = 8.33 ± 0.35 k p c . {\displaystyle \ R_{0}=8.33\pm 0.35\,\mathrm {kpc} .}

Пересчёт массы центрального тела при изменении оценки расстояния производится по формуле:

× 10 6 M ⊙ . {\displaystyle \ \times 10^{6}M_{\odot }.}

Гравитационный радиус чёрной дыры массой 4⋅106 масс Солнца составляет примерно 12 млн км, или 0,08 а. е., то есть в 1400 раз меньше, чем ближайшее расстояние, на которое подходила к центральному телу звезда S2. Однако среди исследователей практически нет сомнений, что центральный объект не является скоплением звёзд малой светимости, нейтронных звёзд или чёрных дыр, поскольку сконцентрированные в таком малом объёме они неизбежно бы слились за короткое время в единый сверхмассивный объект, который не может быть ничем иным, кроме чёрной дыры.

Сверхмассивные чёрные дыры вне нашей галактики

  • По состоянию на 2018 год самая тяжёлая сверхмассивная чёрная дыра находится в квазаре TON 618 в созвездии Гончих Псов на расстоянии 10,37 млрд световых лет от Солнца. Её масса составляет 66 млрд M⊙.
  • Сверхмассивная чёрная дыра в центре галактики Хольмберг 15A (en:Holmberg 15A), находящейся в созвездии Кита в 700 млн св. лет от Солнца, имеет массу равную примерно 40±8 млрд масс Солнца.
  • Сверхмассивная чёрная дыра массой 21 млрд масс Солнца находится в галактике NGC 4889 в созвездии Волосы Вероники.
  • Квазар OJ 287 в созвездии Рака представляет собой двойную систему чёрных дыр, бо́льшая из которых имеет массу равную 18 млрд M⊙, фактически массу небольшой галактики.
  • Масса чёрной дыры в центре галактики NGC 1277 в созвездии Персея составляет 17 млрд M⊙, что составляет 14 % массы всей галактики.
  • Сверхмассивная чёрная дыра Q0906+6930 в созвездии Большой Медведицы имеет массу в 10 млрд M⊙.

Сверхмассивные чёрные дыры в карликовых галактиках

В 2011 году активную сверхмассивную чёрную дыру массой 3⋅106M⊙ нашли в карликовой галактике Henize 2−10 (en:Hen 2-10) в 30 млн световых лет от Солнца в созвездии Компаса. Затем было найдено около 100 активных массивных чёрных дыр в галактиках с относительно слабым звездообразованием. Дальнейший поиск с помощью более длинных радиоволн помог обнаружить 39 кандидатов в менее активные массивные чёрные дыры, из которых минимум 14 из кандидатов являются, скорее всего, массивными чёрными дырами. Некоторые из этих потенциальных массивных чёрных дыр находятся не в центрах их галактик, а на окраинах. Компьютерное моделирование показало, что до половины всех карликовых галактик могут иметь нецентральные чёрные дыры.

> См. также

  • Список наиболее массивных чёрных дыр

> Примечания

Ссылки

  • Раскрыт механизм образования сверхмассивных чёрных дыр

Астрономы получили рекордно детальное изображение объекта Sgr A*. Это сверхмассивная чёрная дыра в центре Млечного Пути и диск падающего на неё вещества. О достижении рассказывает научная статья, опубликованная большой группой авторов в издании Astrophysical Journal.

Учёные весьма интересуются чёрными дырами вообще и сверхмассивными в частности. Эти экстремальные объекты помогают проверить передовые теории гравитации и вообще выяснить поведение материи в условиях, недостижимых в земных лабораториях.

Ближайшая к Земле известная сверхмассивная чёрная дыра расположена в центре Галактики. Для того чтобы получить как можно более детальные её изображения, создана сеть радиотелескопов EHT. Конечной целью проекта является непосредственное наблюдение горизонта событий (условно говоря, «поверхности» чёрной дыры) и её так называемой тени. Тень представляет собой тёмную область на ярком фоне, которая возникает из-за воздействия гравитации объекта на пролетающие мимо фотоны. Согласно некоторым исследованиям, именно форма тени позволит отличить чёрную дыру от портала в удалённые области Вселенной – кротовой норы.

Данные, о которых идёт речь в новой статье, были получены сетью EHT, когда к ней впервые был подключён чилийский 12-метровый радиотелескоп APEX. Наблюдения были проведены в 2013 году, последующие годы ушли на обработку данных.

Поясним, что EHT представляет собой интерферометр. «Вести.Наука» (nauka.vesti.ru) подробно рассказывали о том, что это такое. Вкратце напомним, что система из двух антенн, расположенных на концах отрезка L (он называется базой интерферометра), по способности различать тонкие детали аналогична одному телескопу с диаметром зеркала L. То есть, условно говоря, можно соорудить «антенну» размером в тысячи километров. Это называется радиоитерферометрией со сверхдлинными базами (РСДБ).

В реальности, правда, всё сложнее. Такая система получает не полноценное изображение, а его фрагменты, пробелы между которыми приходится заполнять с помощью моделей. Поэтому желательно использовать не две антенны, а несколько. Чем больше в сети баз (отрезков, соединяющих телескопы), различающихся по длине и/или по направлению, тем полнее будут собранные данные.

Без «Апекса» система EHT состояла из пяти телескопов, расположенных на Гавайях, в Калифорнии и Аризоне. Подключение чилийского телескопа сразу увеличило максимальную базу сети почти вдвое, примерно до 10 тысяч километров. К тому же антенна, расположенная в Южном полушарии, значительно облегчила наблюдения центра Галактики ввиду его расположения на небе.

«Мы много работали на высоте более 5000 метров, устанавливая оборудование, чтобы телескоп APEX был готов к РСДБ-наблюдениям с длиной волны 1,3 миллиметра, – говорит соавтор исследования Алан Рой (Alan Roy) из Института радиоастрономии имени Макса Планка в пресс-релизе организации. – Мы гордимся эффективностью APEX в этом эксперименте».

В результате удалось разглядеть в объекте Sgr A* детали размером 36 миллионов километров. Что, напомним, почти в пять раз меньше дистанции от Земли до Солнца, и это на расстоянии 26 тысяч световых лет от наблюдателя. Это рекордная величина. Она меньше предполагаемого диаметра аккреционного диска и всего в три раза больше радиуса Шварцшильда, который условно можно принять за размер чёрной дыры.

Подвергнув полученные данные сложной математической обработке, авторы построили две модели источника, которые согласуются с новыми наблюдениями. Согласно одной из них, мы имеем дело с ярким кольцом вокруг относительно тусклого центра. В другой речь идёт об отдельном излучающем пятне, сильно смещённом относительно центра изображения. Оба варианта показаны на рисунке.

РСДБ-сеть (слева внизу) и построенные по полученным данным модели излучения (справа вверху).

Исследователи тщательно проверили полученные данные и убедились, что они относятся именно к внутренней структуре источника, а не к искажениям, внесённым в сигнал межзвёздной средой.

«Межзвёздные мерцания, которые в принципе могут привести к искажениям изображения, не являются доминирующим эффектом на длине волны 1,3 миллиметра», – объясняет соавтор работы Димитриос Псалтис (Dimitrios Psaltis) из Университета Аризоны.

В будущем исследователи планируют интерпретировать собранные данные, чтобы выяснить физические условия, царящие вокруг чёрной дыры. Также учёные собираются получить ещё более подробные изображения объекта. С 2017 года в составе сети EHT работает знаменитый радиотелескоп ALMA, также расположенный в Чили. Так что в скором будущем нас, вероятно, снова ждут интересные новости.

Напомним, что «Вести.Наука» не впервые рассказывают об окрестностях Sgr A*. Например, мы писали об обнаруженной там загадочной нити, образовании звёзд и полчищах чёрных дыр звёздной массы.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *