Неопределенность гейзенберга простыми

Содержание

Принцип неопределённости

Квантовая механика

Δ x ⋅ Δ p x ⩾ ℏ 2 {\displaystyle \Delta x\cdot \Delta p_{x}\geqslant {\frac {\hbar }{2}}}

Введение
Математические основы

Основа

Фундаментальные понятия

Эксперименты

Развитие теории

Сложные темы

Известные учёные

Планк · Эйнштейн · Шрёдингер · Гейзенберг · Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт

См. также: Портал:Физика

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей). Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Соотношение неопределённостей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней физической квантовой механики. Является следствием принципа корпускулярно-волнового дуализма.

Краткий обзор

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений.

Согласно принципу неопределённости у частицы не могут быть одновременно точно измерены положение и скорость (импульс). Принцип неопределённости уже в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда не реализуется ни одна из двух крайних ситуаций (полностью определённый импульс и полностью неопределённая пространственная координата — или полностью неопределённый импульс и полностью определённая координата).

Пример: частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; она не характеризуется ни определённым значением импульса (учитывая его направление!), ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована в пределах всего пространства коробки, то есть её координаты не имеют определённого значения, локализация частицы осуществлена не точнее размеров коробки).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).

Соотношение неопределённостей в квантовой механике в математическом смысле есть прямое следствие некоего свойства преобразования Фурье.

Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временно́е положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что p x = ℏ k x , {\displaystyle p_{x}=\hbar k_{x},} то есть импульс в квантовой механике — это и есть пространственная частота вдоль соответствующей координаты.

В повседневной жизни (наблюдая макроскопические объекты или микрочастицы, перемещающиеся в макроскопических областях пространства) мы обычно не наблюдаем квантовую неопределённость потому, что значение ℏ {\displaystyle \hbar } чрезвычайно мало, и поэтому являющиеся следствием соотношений неопределённости эффекты настолько ничтожны, что не улавливаются измерительными приборами или органами чувств.

Определение

Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δ x {\displaystyle \Delta x} координаты и среднеквадратического отклонения Δ p {\displaystyle \Delta p} импульса, мы найдем что:

Δ x Δ p ⩾ ℏ 2 {\displaystyle \Delta x\Delta p\geqslant {\frac {\hbar }{2}}} ,

где ħ — приведённая постоянная Планка.

Отметим, что это неравенство даёт несколько возможностей — в нерелятивистской физике состояние может быть таким, что x {\displaystyle x} может быть измерен со сколь угодно большой точностью, но тогда p {\displaystyle p} будет известен только приблизительно, или наоборот p {\displaystyle p} может быть определён со сколь угодно большой точностью, в то время как x {\displaystyle x} — нет. Во всех же других состояниях и x {\displaystyle x} , и p {\displaystyle p} могут быть измерены с «разумной» (но не произвольно высокой) точностью.

В релятивистской физике в системе отсчёта, покоящейся относительно микрообъекта, существует минимальная погрешность измерения его координат Δ q ∼ ℏ m c {\displaystyle \Delta q\sim {\frac {\hbar }{mc}}} . Этой погрешности отвечает неопределённость импульса Δ p ∼ m c {\displaystyle \Delta p\sim mc} , соответствующая минимальной пороговой энергии для образования пары частица-античастица, в результате чего сам процесс измерения теряет смысл.

В системе отсчёта, относительно которой микрообъект движется с энергией ϵ {\displaystyle \epsilon } минимальная погрешность измерения его координат: Δ q ∼ ℏ c ϵ {\displaystyle \Delta q\sim {\frac {\hbar c}{\epsilon }}} . В предельном случае ультрарелятивистских энергий энергия связана с импульсом соотношением ϵ = c p {\displaystyle \epsilon =cp} и Δ q ∼ ℏ p {\displaystyle \Delta q\sim {\frac {\hbar }{p}}} , то есть погрешность измерения координаты совпадает с де-бройлевской длиной волны микрообъекта.

Когда достигается равенство

Равенство в соотношении неопределённостей достигается тогда и только тогда, когда форма представления вектора состояния системы в координатном представлении совпадает с формой его представления в импульсном представлении (не меняется при преобразовании Фурье).

Варианты и примеры

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме он применим к каждой паре сопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которая будет приведена далее.

Теорема. Для любых самосопряжённых операторов: A : H → H {\displaystyle A\colon H\to H} и B : H → H {\displaystyle B\colon H\to H} , и любого элемента x {\displaystyle x} из H {\displaystyle H} такого, что A B x {\displaystyle ABx} и B A x {\displaystyle BAx} оба определены (то есть, в частности, A x {\displaystyle Ax} и B x {\displaystyle Bx} также определены), имеем:

⟨ x | A B | x ⟩ ⟨ x | B A | x ⟩ = | ⟨ B x | A x ⟩ | 2 ⩽ | ⟨ A x | A x ⟩ | | ⟨ B x | B x ⟩ | = ‖ A x ‖ 2 ‖ B x ‖ 2 {\displaystyle \langle x|AB|x\rangle \langle x|BA|x\rangle =\left|\langle Bx|Ax\rangle \right|^{2}\leqslant \left|\langle Ax|Ax\rangle \right|\left|\langle Bx|Bx\rangle \right|=\|Ax\|^{2}\|Bx\|^{2}}

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

1 4 | ⟨ x | A B − B A | x ⟩ | 2 ⩽ ‖ A x ‖ 2 ‖ B x ‖ 2 . {\displaystyle {\frac {1}{4}}|\langle x|AB-BA|x\rangle |^{2}\leqslant \|Ax\|^{2}\|Bx\|^{2}.}

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор A B − B A {\displaystyle AB-BA} называют коммутатором A {\displaystyle A} и B {\displaystyle B} и обозначают как {\displaystyle } . Он определён для тех x {\displaystyle x} , для которых определены оба A B x {\displaystyle ABx} и B A x {\displaystyle BAx} .

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:

Предположим, A {\displaystyle A} и B {\displaystyle B} — две физические величины, которые связаны с самосопряжёнными операторами. Если A B ψ {\displaystyle AB\psi } и B A ψ {\displaystyle BA\psi } определены, тогда:

Δ ψ A Δ ψ B ⩾ 1 2 | ⟨ ⟩ ψ | {\displaystyle \Delta _{\psi }A\,\Delta _{\psi }B\geqslant {\frac {1}{2}}\left|\left\langle \left\right\rangle _{\psi }\right|} ,

где:

⟨ X ⟩ ψ = ⟨ ψ | X | ψ ⟩ {\displaystyle \left\langle X\right\rangle _{\psi }=\left\langle \psi |X|\psi \right\rangle }

— среднее значение оператора величины X {\displaystyle X} в состоянии ψ {\displaystyle \psi } системы, и

Δ ψ X = ⟨ X 2 ⟩ ψ − ⟨ X ⟩ ψ 2 {\displaystyle \Delta _{\psi }X={\sqrt {\langle {X}^{2}\rangle _{\psi }-\langle {X}\rangle _{\psi }^{2}}}}

— оператор стандартного отклонения величины X {\displaystyle X} в состоянии ψ {\displaystyle \psi } системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов A {\displaystyle A} и B {\displaystyle B} , которые имеют один и тот же собственный вектор ψ {\displaystyle \psi } . В этом случае ψ {\displaystyle \psi } представляет собой чистое состояние, которое является одновременно измеримым для A {\displaystyle A} и B {\displaystyle B} .

Общие наблюдаемые переменные, которые подчиняются принципу неопределённости

Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных A {\displaystyle A} и B {\displaystyle B} , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости — между координатой и импульсом частицы в пространстве:

Δ x i Δ p i ⩾ ℏ 2 {\displaystyle \Delta x_{i}\Delta p_{i}\geqslant {\frac {\hbar }{2}}}

Из принципа неопределённости между импульсом и координатой следует, что чем меньше исследуемые расстояния, тем большей энергией должны обладать элементарные частицы. В ультрарелятивистской области ( p ≫ M c {\displaystyle p\gg Mc} ) энергия E {\displaystyle E} пропорциональна импульсу p {\displaystyle p} : E = c p {\displaystyle E=cp} и соотношение неопределённости для импульса и координаты принимает вид Δ E Δ x ⩾ c ℏ 2 {\displaystyle \Delta E\Delta x\geqslant c{\frac {\hbar }{2}}} , так что Δ E ⩾ 10 − 14 Δ x {\displaystyle \Delta E\geqslant {\frac {10^{-14}}{\Delta x}}} , где Δ E {\displaystyle \Delta E} выражено в ГэВ, а Δ x {\displaystyle \Delta x} в см. Этим соотношением определяется энергия элементарных частиц, необходимая для достижения заданных малых расстояний между ними. Для сближения элементарных частиц на расстояния 10 − 14 {\displaystyle 10^{-14}} см и меньше нужно сообщить им энергию, большую 1 {\displaystyle 1} ГэВ.

  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:

Δ J i Δ J j ⩾ ℏ 2 | ⟨ J k ⟩ | {\displaystyle \Delta J_{i}\Delta J_{j}\geqslant {\frac {\hbar }{2}}\left|\left\langle J_{k}\right\rangle \right|} где i , {\displaystyle i,} j , {\displaystyle j,} k {\displaystyle k} различны и J i {\displaystyle J_{i}} обозначает угловой момент вдоль оси x i {\displaystyle x_{i}} .

  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:

Δ E Δ t ⩾ ℏ 2 {\displaystyle \Delta E\Delta t\geqslant {\frac {\hbar }{2}}}

Это соотношение можно понимать одним из трёх возможных способов:

  1. Δ E {\displaystyle \Delta E} — неопределённость энергии состояния микрообъекта, пребывающего в этом состоянии время Δ t {\displaystyle \Delta t} .
  2. Δ E {\displaystyle \Delta E} — неопределённость энергии микрообъекта в некотором процессе длительностью Δ t {\displaystyle \Delta t} .
  3. Δ E {\displaystyle \Delta E} — максимальная точность определения энергии квантовой системы, достижимая путём процесса измерения, длящегося время Δ t {\displaystyle \Delta t} .

Единого мнения о выводимости этого соотношения из остальных аксиом квантовой механики нет.

  • Соотношение неопределённости между числом фотонов и фазой волны. Рассмотрим монохроматическое электромагнитное излучение в

некотором объёме. С корпускулярной точки зрения, оно представляет собой коллектив N {\displaystyle N} фотонов с энергией каждого фотона ℏ ω {\displaystyle \hbar \omega } . С волновой точки зрения, оно представляет собой классическую волну с фазой Φ = ω t {\displaystyle \Phi =\omega t} . Корпускулярная N {\displaystyle N} и волновая Φ {\displaystyle \Phi } величины связаны соотношением неопределённостей:

Δ N Δ Φ ⩾ 1 {\displaystyle \Delta N\Delta \Phi \geqslant 1}

Это соотношение следует из соотношения неопределённостей для энергии и времени. Для измерения энергии любого квантового объекта с точностью Δ E {\displaystyle \Delta E} надо затратить время Δ t ⩾ ℏ Δ E {\displaystyle \Delta t\geqslant {\frac {\hbar }{\Delta E}}} . Неопределённость энергии коллектива фотонов Δ E = ℏ ω Δ N {\displaystyle \Delta E=\hbar \omega \Delta N} , где Δ N {\displaystyle \Delta N} — неопределённость числа фотонов. Чтобы её измерить, необходимо время Δ t ⩾ ℏ ℏ ω Δ N {\displaystyle \Delta t\geqslant {\frac {\hbar }{\hbar \omega \Delta N}}} . За это время изменение фазы волны Δ Φ = ω Δ t {\displaystyle \Delta \Phi =\omega \Delta t} . Получаем Δ Φ ⩾ 1 Δ N {\displaystyle \Delta \Phi \geqslant {\frac {1}{\Delta N}}} .

  • Следует подчеркнуть, что для выполнения условий теоремы, необходимо, чтобы оба самосопряжённых оператора были определены на одном и том же множестве функций. Примером пары операторов, для которых это условие нарушается, может служить оператор проекции углового момента L z {\displaystyle L_{z}} и оператор азимутального угла φ {\displaystyle \varphi } . Первый из них является самосопряжённым только на множестве 2π-периодичных функций, в то время как оператор φ {\displaystyle \varphi } , очевидно, выводит из этого множества. Для решения возникшей проблемы можно вместо φ {\displaystyle \varphi } взять sin ⁡ φ {\displaystyle \sin \varphi } , что приведёт к следующей форме принципа неопределённости:

⟨ ( Δ L z ) 2 ⟩ ⟨ ( Δ sin ⁡ φ ) 2 ⟩ ⩾ ℏ 2 4 ⟨ ( cos ⁡ φ ) 2 ⟩ {\displaystyle \langle (\Delta L_{z})^{2}\rangle \langle (\Delta \sin \varphi )^{2}\rangle \geqslant {\frac {\hbar ^{2}}{4}}\langle (\cos \varphi )^{2}\rangle } . Однако, при ⟨ ( φ ) 2 ⟩ ≪ π 2 {\displaystyle \langle (\varphi )^{2}\rangle \ll \pi ^{2}} условие периодичности несущественно и принцип неопределённости принимает привычный вид: ⟨ ( Δ L z ) 2 ⟩ ⟨ ( Δ φ ) 2 ⟩ ⩾ ℏ 2 4 {\displaystyle \langle (\Delta L_{z})^{2}\rangle \langle (\Delta \varphi )^{2}\rangle \geqslant {\frac {\hbar ^{2}}{4}}} .

Замечание

Для трёхмерного осциллятора принцип неопределённости принимает вид:

⟨ Δ L z ⟩ ⟨ Δ φ ⟩ ( 1 − 3 ( ⟨ Δ φ ⟩ ) 2 π 2 ) ⩾ ℏ 2 {\displaystyle \langle \Delta L_{z}\rangle {\frac {\langle \Delta \varphi \rangle }{(1-{\frac {3(\langle \Delta \varphi \rangle )^{2}}{\pi ^{2}}})}}\geqslant {\frac {\hbar }{2}}} ,

а для оператора числа частиц n {\displaystyle n} и угла φ {\displaystyle \varphi } вид:

1 2 ⟨ Δ φ ⟩ ( 1 − 3 ( ⟨ Δ φ ⟩ ) 2 π 2 ) ⩾ ℏ 2 {\displaystyle {\frac {^{\frac {1}{2}}\langle \Delta \varphi \rangle }{(1-{\frac {3(\langle \Delta \varphi \rangle )^{2}}{\pi ^{2}}})}}\geqslant {\frac {\hbar }{2}}} .

(см. А. И. Базь, Я. Б. Зельдович, А. М. Переломов. Рассеяние, реакции и распады в нерелятивистской квантовой механике. 2-е изд., М., Наука, 1971. С. 58-59.)

Вывод в квантовой теории оценивания

Принцип неопределённости координата-импульс альтернативно выводится как оценка максимального правдоподобия в квантовой теории оценивания.

Принцип неопределённости время-энергия альтернативно выводится как выражение квантового неравенства Крамера — Рао в квантовой теории оценивания, в случае когда измеряется положение частицы.

Интерпретации

Основная статья: Интерпретация квантовой механики

Альберту Эйнштейну принцип неопределённости не очень понравился, и он бросил вызов Нильсу Бору и Вернеру Гейзенбергу известным мысленным экспериментом (См. дебаты Бор-Эйнштейн для подробной информации): заполним коробку радиоактивным материалом, который испускает радиацию случайным образом. Коробка имеет открытый затвор, который немедленно после заполнения закрывается при помощи часов в определённый момент времени, позволяя уйти небольшому количеству радиации. Таким образом время уже точно известно. Мы всё ещё хотим точно измерить сопряжённую переменную энергии. Эйнштейн предложил сделать это, взвешивая коробку до и после. Эквивалентность между массой и энергией по специальной теории относительности позволит точно определить, сколько энергии осталось в коробке. Бор возразил следующим образом: если энергия уйдёт, тогда полегчавшая коробка сдвинется немного на весах. Это изменит положение часов. Таким образом часы отклоняются от нашей неподвижной системы отсчёта, и по специальной теории относительности, их измерение времени будет отличаться от нашего, приводя к некоторому неизбежному значению ошибки. Детальный анализ показывает, что неточность правильно даётся соотношением Гейзенберга.

В пределах широко, но не универсально принятой Копенгагенской интерпретации квантовой механики, принцип неопределённости принят на элементарном уровне. Физическая вселенная существует не в детерминистичной форме, а скорее как набор вероятностей, или возможностей. Например, картина (распределение вероятности) произведённая миллионами фотонов, дифрагирующими через щель, может быть вычислена при помощи квантовой механики, но точный путь каждого фотона не может быть предсказан никаким известным методом. Копенгагенская интерпретация считает, что это не может быть предсказано вообще никаким методом.

Именно эту интерпретацию Эйнштейн подвергал сомнению, когда писал Максу Борну: «Бог не играет в кости». Нильс Бор, который был одним из авторов Копенгагенской интерпретации, ответил: «Эйнштейн, не говорите Богу, что делать».

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё, будут известны, а орлы/решки будут всё ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости — результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной литературе

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка состоит в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (см. выше). Например, проекции импульса на оси x {\displaystyle x} и y {\displaystyle y} можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузного семечка пальцем. Эффект известен — нельзя предсказать, как быстро или куда семечко исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала «Звёздный Путь» в телепортаторе. Однако неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала Джина Родденберри спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»

В романе «Дюна» Фрэнка Герберта: «Предвиденье, — понял он, — словно луч света, за пределами которого ничего не увидишь, он определяет точную меру… и, возможно, ошибку». Оказывается, и в его провидческих способностях крылось нечто вроде принципа неопределённости Гейзенберга: чтобы увидеть, нужно затратить энергию, а истратив энергию, изменишь увиденное.»

Научный юмор

Необычная природа принципа неопределённости Гейзенберга и его запоминающееся название сделали его источником ряда шуток. Утверждают, что популярной надписью на стенах физического факультета университетских городков является: «Здесь, возможно, был Гейзенберг».

В другой шутке о принципе неопределённости специалиста по квантовой физике останавливает на шоссе полицейский и спрашивает: «Вы знаете, как быстро вы ехали, сэр?» На что физик отвечает: «Нет, но я точно знаю, где я!»

> См. также

  • Квантовая механика
  • Квантовая физика
  • Гейзенбаг
  • Закон Гудхарта

Примечания

  1. Для каждой пары сопряжённых величин имеется своё соотношение неопределённостей, хотя и имеющее один и тот же вид Δ A ⋅ Δ B ⩾ ℏ {\displaystyle \Delta A\cdot \Delta B\geqslant \hbar } ; поэтому этот термин часто употребляется во множественном числе (соотношения неопределённостей), как в том случае, когда речь идет о соотношениях неопределённостей вообще, так и в случаях, когда имеются в виду несколько конкретных соотношений для разных величин, а не для только одной пары.
  2. Существуют, однако, способы частичного обхода этих ограничений, связанные со слабыми измерениями.
  3. Это в принципе касается не только частиц, но и любых динамических объектов, например, поля, для которого аналогом координат у частицы служат полевые переменные, а аналогом компонент импульса у частицы — канонические импульсы, связанные с изменением поля со временем.
  4. В примере с частицей в коробке модуль импульса, правда, определён, но зато не определено его направление.
  5. Проще всего это свойство может быть проиллюстрировано таким рассуждением. Пусть есть некоторая функция f(x) и её фурье-образ (спектр) F(k) — то есть f ( x ) = ∫ F ( k ) e i k x d k . {\displaystyle f(x)=\int F(k)e^{ikx}dk.} Очевидно, что если мы «сожмём функцию f» по x в A раз, то есть перейдём к функции fA(x) = f(Ax), то её спектр растянется во столько же раз: FA(k) = const·F(k/A), поскольку частота каждой спектральной гармоники e i k x {\displaystyle e^{ikx}} этого разложения должны будут, очевидно, умножиться на A. Эта иллюстрация, строго говоря, конечно, носит довольно частный характер, однако она обнажает физический смысл иллюстрируемого свойства: когда мы сжимаем сигнал, его частоты во столько же раз увеличиваются. Не намного сложнее прямым вычислением получить аналогичный вывод для случая гауссовых волновых пакетов, показав, что полуширина гауссова волнового пакета обратно пропорциональна полуширине его спектра (имеющего также гауссов вид). Могут быть доказаны и более общие теоремы, сводящиеся точно к соотношению неопределённостей Гейзенберга, только без ħ в правой части (или, иначе говоря, в точности повторяющие соотношение неопределённостей Гейзенберга при ħ = 1).

Литература

  1. А. С. Давыдов Квантовая механика, 2-ое изд., — М.: Наука, 1973.
  2. Точнее: «Теория даёт много, но к таинствам Старика она не подводит нас ближе. Во всяком случае, я убеждён, что не играет в кости» (Die Theorie liefert viel, aber dem Geheimnis des Alten bringt sie uns doch nicht näher. Jedenfalls bin ich überzeugt davon, dass der nicht würfelt). Письмо Максу Борну от 12 декабря 1926 г, цит. Einstein, The Life and Times ISBN 0-380-44123-3
  3. Chad Meister Introducing philosophy of religion
  • Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
  • Яворский Б. М. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — 1056 с. — ISBN 978-5-488-01248-6.
  • Пономарёв Л. И. По ту сторону кванта. — М.: Молодая гвардия, 1971. — 304 с.

Журнальные статьи

  • Heisenberg W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. — Zeitschrift für Physik. — 1927. — Vol. 43. — P. 172—198. (Англ. перевод в кн.:: Wheeler J. A., Zurek H. Quantum Theory and Measurement. — Princeton Univ. Press. — 1983. — P. 62-84).
  • Мандельштам Л. И., Тамм И. Е. Соотношение неопределённости энергия-время в нерелятивистской квантовой механике. — Изв. Акад. наук СССР (сер. физ.). — 1945. — Т. 9. — С. 122—128.
  • Folland G., Sitaram A. The Uncertainty Principle: A Mathematical Survey. — Journal of Fourier Analysis and Applications. — 1997. — P. 207—238.
  • Суханов А. Д. Новый подход к соотношению неопределённостей энергия-время. — Физика элементарных частиц и атомного ядра. — 2001. — Том 32. Вып. 5. — С. 1177.

О соотношениях неопределённостей Шрёдингера

  • Шрёдингер Э. К принципу неопределённостей Гейзенберга // Избранные труды по квантовой механике. — М.: Наука, 1976. — С. 210—217.
  • Додонов В. В., Манько В. И. Обобщения соотношений неопределённостей в квантовой механике. — Труды ФИАН СССР. — 1987. — Том 183. — С. 5-70.
  • Суханов А. Д. Соотношения неопределённостей Шрёдингера и физические особенности коррелированно-когерентных состояний. — Теоретическая и математическая физика. — 2002. — Том 132, № 3. — С. 449—468.
  • Суханов А. Д. Соотношение неопределённостей Шрёдингера для квантового осциллятора в термостате. — Теоретическая и математическая физика. — 2006. — Том 148, № 2. — С. 295—308.
  • Tarasov V. E. Uncertainty relation for non-Hamiltonian quantum systems. — Journal of Mathematical Physics. — 2013. — Vol. 54. — No. 1. — 012112.
  • Тарасов В. Е. Вывод соотношения неопределённостей для квантовых гамильтоновых систем. — Московское научное обозрение. — 2011, № 10. — C. 3-6.

Дополнительно

  1. Клайн Б. В поисках. Физики и квантовая теория. — М., Атомиздат, 1971. — Тираж 58000 экз. — с. 192-216
  2. Гейзенберг В. Развитие интерпретации квантовой теории // Нильс Бор и развитие физики. — М., ИЛ, 1958. — c. 23-45
  3. Широков, 1972, с. 20.
  4. Готт В. С. Философские вопросы современной физики. — М.: Высшая школа, 1972. — С. 63.
  5. Яворский Б. М., Пинский А. А. Основы физики: Учебн. В 2 т. Т. 1. Механика. Молекулярная физика. Электродинамика / Под ред. Ю. И. Дика. — 5-е изд., стереот. — М.: ФИЗМАТЛИТ, 2003. — ISBN 5-9221-0382-2. — С. 136—139.
  6. Ландау Л. Д., Лифшиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 264-265
  7. Медведев Б. В. Начала теоретической физики. Механика, теория поля, элементы квантовой механики. — М.: ФИЗМАТЛИТ, 2007. — ISBN 978-5-9221-0770-9. — С. 453.
  8. Широков, 1972, с. 262.
  9. Яворский, 2007, с. 744.
  10. Воронцов Ю. И. Соотношение неопределённости энергия — время измерения, УФН, 1981, т. 135, с.337
  11. Тарасов Л. В. Соотношения неопределённостей // Основы квантовой механики. — М: Высшая школа, 1978. — С. 42.
  12. Хелстром К. Квантовая теория оценивания. Оценка максимального правдоподобия. Принцип неопределённостей // Квантовая теория проверки гипотез и оценивания.— М.: Мир, 1979. — С. 272—277.
  13. Хелстром К. Квантовая теория оценивания. Квантовое неравенство Крамера — Рао. Параметр смещения и соотношение неопределённости время-энергия // Квантовая теория проверки гипотез и оценивания.— М.: Мир, 1979. — С. 301—302.

Ссылки

  • Стэнфордская энциклопедия философии (англ.)
  • aip.org: Квантовая механика 1925—1927 — Принцип неопределённости (англ.)
  • Мир физики Эрика Вайсштейна — Принцип неопределённости (англ.)
  • Уравнение Шрёдингера из точного принципа неопределённости (англ.)
  • Джон Бэз о соотношении неопределённости время-энергия (англ.)

Объясните принцип неопределённости Гейзенберга простыми словами?

Kirill Stupakov 83 год назад магистр математики; преподаватель математики в школе и на младших курсах

Что-то мне не понравились ответы, а еще и в комментах наезжают. Так что давайте попробую.

Основная проблема квантовой механики следующая: рассматриваемые частички настолько малы, что попытка измерить их характеристики ведет к изменению этих или других характеристик. (Пусть многие спорят, но это одна из первых фундаментальных идей)

Поясню на примере. Вот мы смотрим на мяч. Это значит, что откуда-то там на него летит много фотонов, они от него отскакивают и попадают к нам в глаз. Таким образом мы видим мяч в таком-то месте.

Теперь представьте, что мы странные роботы, которые бросают и ловят бильярдные шары. Мы пытаемся «увидеть» при помощи бильярдных шаров исходный мяч: то есть просто кидаемся шарами в мяч и смотрим, какие отскочили и куда. Но тут возникает маленькая проблема. Бильярдные шары довольно тяжелые, и каждый раз, когда мы попадаем в мяч, они его чуть-чуть разгоняют. Чем точнее мы хотим измерить расположение мяча, тем больше нам надо попавших в него шаров, тем сильнее мяч разгоняется.

Теперь попробуем посмотреть на электрон. Тут возникает та же проблема. Мы, конечно, пускаем в него фотоны, но фотоны по сравнению с электроном уже довольно крупные и начинают его двигать. Таким образом, чем точнее мы пытаемся определить положение электрона, тем сильнее меняем его скорость (но если по честному, то импульс).

Принцип неопределенности Гейзенберга говорит, что 1) это не наши методы плохи, а так устроена природа: какой бы опыт для определения положения электрона мы бы ни придумали, мы будем изменять импульс; 2) есть колличественная оценка, как сильно будет меняться импульс, и она не утешает. Если интересно, то количественная оценка: (точность измерения координаты)*(точность измерения импульса)≥ (постоянная Планка):(4*пи)

Надеюсь, хуже не стало.

Принцип неопределенности Гейзенберга

В обыденной жизни нас окружают материальные объекты, размеры которых сопоставимы с нами: машины, дома, песчинки и т. д. Наши интуитивные представления об устройстве мира формируются в результате повседневного наблюдения за поведением таких объектов. Поскольку все мы имеем за плечами прожитую жизнь, накопленный за ее годы опыт подсказывает нам, что раз всё наблюдаемое нами раз за разом ведет себя определенным образом, значит и во всей Вселенной, во всех масштабах материальные объекты должны вести себя аналогичным образом. И когда выясняется, что где-то что-то не подчиняется привычным правилам и противоречит нашим интуитивным понятиям о мире, нас это не просто удивляет, а шокирует.

В первой четверти ХХ века именно такова была реакция физиков, когда они стали исследовать поведение материи на атомном и субатомном уровнях. Появление и бурное развитие квантовой механики открыло перед нами целый мир, системное устройство которого попросту не укладывается в рамки здравого смысла и полностью противоречит нашим интуитивным представлениям. Но нужно помнить, что наша интуиция основана на опыте поведения обычных предметов соизмеримых с нами масштабов, а квантовая механика описывает вещи, которые происходят на микроскопическом и невидимом для нас уровне, — ни один человек никогда напрямую с ними не сталкивался. Если забыть об этом, мы неизбежно придем в состояние полного замешательства и недоумения. Для себя я сформулировал следующий подход к квантово-механическим эффектам: как только «внутренний голос» начинает твердить «такого не может быть!», нужно спросить себя: «А почему бы и нет? Откуда мне знать, как всё на самом деле устроено внутри атома? Разве я сам туда заглядывал?» Настроив себя подобным образом, вам будет проще воспринять статьи этой книги, посвященные квантовой механике.

Принцип Гейзенберга вообще играет в квантовой механике ключевую роль хотя бы потому, что достаточно наглядно объясняет, как и почему микромир отличается от знакомого нам материального мира. Чтобы понять этот принцип, задумайтесь для начала о том, что значит «измерить» какую бы то ни было величину. Чтобы отыскать, например, эту книгу, вы, войдя в комнату, окидываете ее взглядом, пока он не остановится на ней. На языке физики это означает, что вы провели визуальное измерение (нашли взглядом книгу) и получили результат — зафиксировали ее пространственные координаты (определили местоположение книги в комнате). На самом деле процесс измерения происходит гораздо сложнее: источник света (Солнце или лампа, например) испускает лучи, которые, пройдя некий путь в пространстве, взаимодействуют с книгой, отражаются от ее поверхности, после чего часть из них доходит до ваших глаз, проходя через хрусталик, фокусируется, попадает на сетчатку — и вы видите образ книги и определяете ее положение в пространстве. Ключ к измерению здесь — взаимодействие между светом и книгой. Так и при любом измерении, представьте себе, инструмент измерения (в данном случае, это свет) вступает во взаимодействие с объектом измерения (в данном случае, это книга).

В классической физике, построенной на ньютоновских принципах и применимой к объектам нашего обычного мира, мы привыкли игнорировать тот факт, что инструмент измерения, вступая во взаимодействие с объектом измерения, воздействует на него и изменяет его свойства, включая, собственно, измеряемые величины. Включая свет в комнате, чтобы найти книгу, вы даже не задумываетесь о том, что под воздействием возникшего давления световых лучей книга может сдвинуться со своего места, и вы узнаете ее искаженные под влиянием включенного вами света пространственные координаты. Интуиция подсказывает нам (и, в данном случае, совершенно правильно), что акт измерения не влияет на измеряемые свойства объекта измерения. А теперь задумайтесь о процессах, происходящих на субатомном уровне. Допустим, мне нужно зафиксировать пространственное местонахождение электрона. Мне по-прежнему нужен измерительный инструмент, который вступит во взаимодействие с электроном и возвратит моим детекторам сигнал с информацией о его местопребывании. И тут же возникает сложность: иных инструментов взаимодействия с электроном для определения его положения в пространстве, кроме других элементарных частиц, у меня нет. И, если предположение о том, что свет, вступая во взаимодействие с книгой, на ее пространственных координатах не сказывается, относительно взаимодействия измеряемого электрона с другим электроном или фотонами такого сказать нельзя.

В начале 1920-х годов, когда произошел бурный всплеск творческой мысли, приведший к созданию квантовой механики, эту проблему первым осознал молодой немецкий физик-теоретик Вернер Гейзенберг. Начав со сложных математических формул, описывающих мир на субатомном уровне, он постепенно пришел к удивительной по простоте формуле, дающий общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, о котором мы только что говорили. В результате им был сформулирован принцип неопределенности, названный теперь его именем:

неопределенность значения координаты x неопределенность скорости > h/m,

математическое выражение которого называется соотношением неопределенностей Гейзенберга:

Δx х Δv > h/m

где Δx — неопределенность (погрешность измерения) пространственной координаты микрочастицы, Δv — неопределенность скорости частицы, m — масса частицы, а h — постоянная Планка, названная так в честь немецкого физика Макса Планка, еще одного из основоположников квантовой механики. Постоянная Планка равняется примерно 6,626 x 10–34 Дж·с, то есть содержит 33 нуля до первой значимой цифры после запятой.

Термин «неопределенность пространственной координаты» как раз и означает, что мы не знаем точного местоположения частицы. Например, если вы используете глобальную систему рекогносцировки GPS, чтобы определить местоположение этой книги, система вычислит их с точностью до 2-3 метров. (GPS, Global Positioning System — навигационная система, в которой задействованы 24 искусственных спутника Земли. Если у вас, например, на автомобиле установлен приемник GPS, то, принимая сигналы от этих спутников и сопоставляя время их задержки, система определяет ваши географические координаты на Земле с точностью до угловой секунды.) Однако, с точки зрения измерения, проведенного инструментом GPS, книга может с некоторой вероятностью находиться где угодно в пределах указанных системой нескольких квадратных метров. В таком случае мы и говорим о неопределенности пространственных координат объекта (в данном примере, книги). Ситуацию можно улучшить, если взять вместо GPS рулетку — в этом случае мы сможем утверждать, что книга находится, например, в 4 м 11 см от одной стены и в 1м 44 см от другой. Но и здесь мы ограничены в точности измерения минимальным делением шкалы рулетки (пусть это будет даже миллиметр) и погрешностями измерения и самого прибора, — и в самом лучшем случае нам удастся определить пространственное положение объекта с точностью до минимального деления шкалы. Чем более точный прибор мы будем использовать, тем точнее будут полученные нами результаты, тем ниже будет погрешность измерения и тем меньше будет неопределенность. В принципе, в нашем обыденном мире свести неопределенность к нулю и определить точные координаты книги можно.

И тут мы подходим к самому принципиальному отличию микромира от нашего повседневного физического мира. В обычном мире, измеряя положение и скорость тела в пространстве, мы на него практически не воздействуем. Таким образом, в идеале мы можем одновременно измерить и скорость, и координаты объекта абсолютно точно (иными словами, с нулевой неопределенностью).

В мире квантовых явлений, однако, любое измерение воздействует на систему. Сам факт проведения нами измерения, например, местоположения частицы, приводит к изменению ее скорости, причем непредсказуемому (и наоборот). Вот почему в правой части соотношения Гейзенберга стоит не нулевая, а положительная величина. Чем меньше неопределенность в отношении одной переменной (например, Δx), тем более неопределенной становится другая переменная (Δv), поскольку произведение двух погрешностей в левой части соотношения не может быть меньше константы в правой его части. На самом деле, если нам удастся с нулевой погрешностью (абсолютно точно) определить одну из измеряемых величин, неопределенность другой величины будет равняться бесконечности, и о ней мы не будем знать вообще ничего. Иными словами, если бы нам удалось абсолютно точно установить координаты квантовой частицы, о ее скорости мы не имели бы ни малейшего представления; если бы нам удалось точно зафиксировать скорость частицы, мы бы понятия не имели, где она находится. На практике, конечно, физикам-экспериментаторам всегда приходится искать какой-то компромисс между двумя этими крайностями и подбирать методы измерения, позволяющие с разумной погрешностью судить и о скорости, и о пространственном положении частиц.

На самом деле, принцип неопределенности связывает не только пространственные координаты и скорость — на этом примере он просто проявляется нагляднее всего; в равной мере неопределенность связывает и другие пары взаимно увязанных характеристик микрочастиц. Путем аналогичных рассуждений мы приходим к выводу о невозможности безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. То есть, если мы проводим измерение состояния квантовой системы на предмет определения ее энергии, это измерение займет некоторый отрезок времени — назовем его Δt. За этот промежуток времени энергия системы случайным образом меняется — происходят ее флуктуация, — и выявить ее мы не можем. Обозначим погрешность измерения энергии ΔЕ. Путем рассуждений, аналогичных вышеприведенным, мы придем к аналогичному соотношению для ΔЕ и неопределенности времени, которым квантовая частица этой энергией обладала:

ΔЕΔt > h

Относительно принципа неопределенности нужно сделать еще два важных замечания:

он не подразумевает, что какую-либо одну из двух характеристик частицы — пространственное местоположение или скорость — нельзя измерить сколь угодно точно;

принцип неопределенности действует объективно и не зависит от присутствия разумного субъекта, проводящего измерения.

Иногда вам могут встретиться утверждения, будто принцип неопределенности подразумевает, что у квантовых частиц отсутствуют определенные пространственные координаты и скорости, или что эти величины абсолютно непознаваемы. Не верьте: как мы только что видели, принцип неопределенности не мешает нам с любой желаемой точностью измерить каждую из этих величин. Он утверждает лишь, что мы не в состоянии достоверно узнать и то, и другое одновременно. И, как и во многом другом, мы вынуждены идти на компромисс. Опять же, писатели-антропософы из числа сторонников концепции «Новой эры» иногда утверждают, что, якобы, поскольку измерения подразумевают присутствие разумного наблюдателя, то, значит, на некоем фундаментальном уровне человеческое сознание связано с Вселенским разумом, и именно эта связь обусловливает принцип неопределенности. Повторим по этому поводу еще раз: ключевым в соотношении Гейзенберга является взаимодействие между частицей-объектом измерения и инструментом измерения, влияющим на его результаты. А тот факт, что при этом присутствует разумный наблюдатель в лице ученого, отношения к делу не имеет; инструмент измерения в любом случае влияет на его результаты, присутствует при этом разумное существо или нет.

Квантовая механика для «чайников»

Квантовая механика

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят — квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.

Квантовая механика для «чайников»

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с. Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные «сходились».

Мир частиц

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Наименьшая порция энергии излучения атома

,

Где h — постоянная Планка, ню — частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.

Макс Планк

При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще — все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга.

Уравнение Шредингера

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Уравнение Шредингера

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x — расстояние или координата частицы, m — масса частицы, E и U — соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!

Эрвин Шредингер

Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы. Математически это записывается так:

Принцип неопределенности Гейзенберга

Здесь дельта x — погрешность определения координаты, дельта v — погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
— Сэр, Вы знаете, с какой скоростью двигались?
— Нет, зато я точно знаю, где я нахожусь

Вернер Гейзенберг

Надеемся, что эта статья помогла Вам немного размять мозги, вспомнить хорошо забытое старое, а может быть и узнать что-то новое. Здесь мы постарались рассказать о квантовой механике просто, понятно и по возможности интересно. Конечно, данная тема не может быть раскрыта в рамках одной статьи, поэтому о парадоксах, нерешенных задачах, черных дырах и котах Шредингера мы поговорим в самое ближайшее время. А пока, чтобы закрепить знания, предлагаем посмотреть тематическое видео. Возможно вас также заинтересуют правила оформления чертежей по ЕСКД.

И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к нашим авторам – профессионалам, которые были взращены с квантовой механикой на устах!

Принцип неопределённости Гейзенберга

Классическая механика · Интерференция · Бра и кет · Гамильтониан

Квантовое состояние · Квантовая наблюдаемая · Волновая функция · Квантовая суперпозиция · Квантовая сцепленность · Смешанное состояние ·

Измерение · Неопределённость · Принцип Паули · Дуализм · Декогеренция · Теорема Эренфеста · Туннельный эффект

Опыт Дэвиссона — Джермера · Опыт Поппера · Опыт Штерна — Герлаха · Опыт Юнга · Проверка неравенств Белла · Фотоэффект · Эффект Комптона

Представление Шрёдингера · Представление Гейзенберга · Представление взаимодействия · Матричная квантовая механика · Интегралы по траекториям · Диаграммы Фейнмана

Уравнение Шрёдингера · Уравнение Паули · Уравнение Клейна — Гордона · Уравнение Дирака · Уравнение фон Неймана · Уравнение Блоха · Уравнение Линдблада · Уравнение Гейзенберга

Копенгагенская интерпретация · Теория скрытых параметров · Многомировая

Квантовая теория поля · Квантовая электродинамика · Квантовая хромодинамика · Квантовая гравитация

Квантовая теория поля · Квантовая гравитация · Теория всего

Планк · Эйнштейн · Шрёдингер · Гейзенберг · Йордан · Бор · Паули · Дирак · Фок · Борн · де Бройль · Ландау · Фейнман · Бом · Эверетт

Квантовая механика
Принцип неопределённости Гейзенберга
Введение
Математические основы
Основа Фундаментальные понятия Эксперименты Формулировки Уравнения Интерпретации Развитие теории Сложные темы Известные учёные
См. также «Физический портал»

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга) в квантовой механике — фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

  • 1 Краткий обзор
  • 2 Определение
  • 3 Варианты и примеры
    • 3.1 Обобщённый принцип неопределённости
    • 3.2 Общие наблюдаемые переменные, которые повинуются принципу неопределённости
    • 3.3 Выражение конечного доступного количества информации Фишера
  • 4 Интерпретации
  • 5 Принцип неопределённости в популярной культуре
    • 5.1 Научный юмор
  • 6 Примечания
  • 7 Литература
    • 7.1 Использованная литература
    • 7.2 Журнальные статьи
  • 8 О соотношениях неопределенностей Шредингера
  • 10 См. также

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений или измерений Ландау.

Согласно принципу неопределённостей, частица не может быть описана как классическая частица, то есть например у нее не могут быть одновременно точно измерено положение и скорость (импульс), так же как у обычной классической волны и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть ее координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки), ни определённым значением импульса (включая его направление; в примере с частицей в коробке модуль импульса определен, но не определено его направление).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).

Соотношение неопределенностей в квантовой механике есть в математическом смысле есть непосредственное прямое следствие некоего свойства преобразования Фурье.

Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временно́е положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что (или px = kx в системе единиц ), то есть импульс в квантовой механике — это и есть пространственная частота вдоль соответствующей координаты.

В повседневной жизни мы обычно не наблюдаем квантовую неопределённость потому, что значение чрезвычайно мало, и поэтому соотношения неопределенностей накладывают такие слабые ограничения на погрешности измерения, которые заведомо незаметны на фоне реальных практических погрешностей наших приборов или органов чувств.

Если имеется несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности — это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что:

,

где — приведённая постоянная Планка.

  • В некоторых случаях «неопределённость» переменной определяется как наименьшая ширина диапазона, который содержит 50 % значений, что, в случае нормального распределения переменных, приводит для произведения неопределённостей к большей нижней границе .

Отметим, что это неравенство даёт несколько возможностей — состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x — нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме, он применим к каждой паре сопряжённых переменных. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Теорема. Для любых самосопряжённых операторов: и , и любого элемента x из H такого, что ABx и BAx оба определены (то есть, в частности, Ax и Bx также определены), имеем:

Это прямое следствие неравенства Коши — Буняковского.

Следовательно, верна следующая общая форма принципа неопределённости, впервые выведенная в 1930 г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером:

Это неравенство называют соотношением Робертсона — Шрёдингера.

Оператор AB − BA называют коммутатором A и B и обозначают как . Он определен для тех x, для которых определены оба ABx и BAx.

Из соотношения Робертсона — Шрёдингера немедленно следует соотношение неопределённости Гейзенберга:

Предположим, A и B — две физические величины, которые связаны с самосопряжёнными операторами. Если ABψ и BAψ определены, тогда:

,

где:

— среднее значение оператора величины X в состоянии ψ системы, и

— оператор стандартного отклонения величины X в состоянии ψ системы.

Приведённые выше определения среднего и стандартного отклонения формально определены исключительно в терминах теории операторов. Утверждение становится однако более значащим, как только мы заметим, что они являются фактически средним и стандартным отклонением измеренного распределения значений. См. квантовая статистическая механика.

То же самое может быть сделано не только для пары сопряжённых операторов (например координаты и импульса, или продолжительности и энергии), но вообще для любой пары Эрмитовых операторов. Существует отношение неопределённости между напряжённостью поля и числом частиц, которое приводит к явлению виртуальных частиц.

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B, которые имеют один и тот же собственный вектор ψ. В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B.

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных A и B, коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости — между координатой и импульсом частицы в пространстве:
  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:

где i, j, k различны и Ji обозначает угловой момент вдоль оси xi.

  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
  • Следует подчеркнуть, что для выполнения условий теоремы, необходимо, чтобы оба самосопряженных оператора были определены на одном и том же множестве функций. Примером пары операторов, для которых это условие нарушается, может служить оператор проекции углового момента Lz и оператор азимутального угла . Первый из них является самосопряженным только на множестве 2π-периодичных функций, в то время как оператор , очевидно, выводит из этого множества. Для решения возникшей проблемы можно вместо взять sin φ, что приведет к следующей форме принципа неопределенности:

. Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид: .

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера — Рао в классической теории измерений, в случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера. См. также полная физическая информация.

  1. Для каждой пары сопряженных величин имеется свое соотношение неопределенностей, хотя и имеющее один и тот же вид ΔA·ΔB ; поэтому этот термин часто употребляются во множественном числе (соотношения неопределенностей), как в том случае, когда речь идет о соотношениях неопределенностей вообще, так и в случаях, когда имеются в виду несколько конкретных соотношений для разных величин, а не для только одной пары.
  2. Имеется в виду квантовая частица, а следовательно — с точки зрения современной физики — в принципе любая частица.
  3. Это в принципе касается не только частиц, но и любых динамических объектов, например, поля, для которого аналогом координат у частицы служат полевые переменные, а аналогом компонент импульса у частицы — канонические импульсы, связанные с изменением поля со временем.
  4. Проще всего это свойство может быть проиллюстрировано таким рассуждением. Пусть есть некоторая функция f(x) и ее фурье-образ (спектр) F(k) — то есть . Очевидно, что если мы «сожмем функцию f» по x в A раз, то есть перейдем к функции fA(x)=f(Ax)), то ее спектр растянется во столько же раз: FA(k)=const·F(k/A), поскольку частота каждой спектральной гармоники eikx этого разложения должны будут очевидно умножиться на A. Эта иллюстрация, строго говоря, конечно, носит довольно частный характер, однако она обнажает физический смысл иллюстрируемого свойства: когда мы сжимаем сигнал, его частоты во столько же раз увеличиваются. Не намного сложнее прямым вычислением получить аналогичный вывод для случая гауссовых волновых пакетов, показав, что полуширина гауссова волнового пакета обратно пропорциональна полуширине его спектра (имеющего также гауссов вид). Могут быть доказаны и более общие теоремы, сводящиеся точно к соотношению неопределенностей Гейзенберга, только без в правой части (или, иначе говоря, в точности повторяющие соотношению неопределенностей Гейзенберга при ).
  5. Здесь имеются в виду погрешности, имеющие не квантовую природу, а происходящих из недостаточной тонкости изготовления, влияния тепловых и других шумов итп.

Использованная литература

  1. А. С. Давыдов Квантовая механика, 2-ое изд., — М.: Наука, 1973.
  2. Точнее: «Теория даёт много, но к таинствам Старика она не подводит нас ближе. Во всяком случае, я убежден, что не играет в кости» (Die Theorie liefert viel, aber dem Geheimnis des Alten bringt sie uns doch nicht näher. Jedenfalls bin ich überzeugt davon, dass der nicht würfelt). Письмо Максу Борну от 12 декабря 1926 г, цит. Einstein, The Life and Times ISBN 0-380-44123-3
  3. Chad Meister Introducing philosophy of religion

Журнальные статьи

  • W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik, 43 1927, pp 172—198. English translation: J. A. Wheeler and H. Zurek, Quantum Theory and Measurement Princeton Univ. Press, 1983, pp. 62-84.
  • Л. И. Мандельштам, И. Е. Тамм «Соотношение неопределённости энергия-время в нерелятивистской квантовой механике», Изв. Акад. Наук СССР (сер. физ.) 9, 122—128 (1945).
  • G. Folland, A. Sitaram, The Uncertainty Principle: A Mathematical Survey, Journal of Fourier Analysis and Applications, 1997 pp 207—238.

О соотношениях неопределенностей Шредингера

  • Шредингер Э. К принципу неопределенностей Гейзенберга. Избранные труды по квантовой механике. М.: Наука, 1976. стр.210-217.
  • Додонов В. В., Манько В. И. Обобщения соотношений неопределенностей в квантовой механике. Труды ФИАН СССР. 1987. Том 183 стр.5-70.
  • Суханов А. Д. Соотношения неопределенностей Шредингера и физические особенности коррелированно-когерентных состояний, Теор. Мат. Физ. Том.132. N.3. (2002) с.449—468.
  • Суханов А. Д. Соотношение неопределенностей Шредингера для квантового осциллятора в термостате. Теор. Мат. Физ. Том.148. N.2. (2006) с.295—308.

См. также

  • Квантовая механика
  • Квантовая физика
  • Гейзенбаг

Принцип неопределенности является фундаментальным законом микромира. Его можно считать частным выражением принципа дополнительности.

В классической механике частица движется по определенной траектории, и в любой момент времени возможно точно определить ее координаты и ее импульс. Относительно микрочастицы такое представление неправомерно. Микрочастица не имеет четко выраженной траектории, она обладает и свойствами частицы, и свойствами волны (корпускулярно‑волновой дуализм). В этом случае понятие «длина волны в данной точке» не имеет физического смысла, а поскольку импульс микрочастицы выражается через длину волны – p =к/л, то отсюда следует, что микрочастица с определенным импульсом имеет полностью неопределенную координату, и наоборот.

В. Гейзенберг (1927 г.), учитывая двойственную природу микрочастиц, пришел к выводу, что невозможно одновременно с любой наперед заданной точностью характеризовать микрочастицу и координатами, и импульсом.

Соотношениями неопределенностей Гейзенберга называются неравенства:

Δx · Δpx ≥ h, Δy · Δpy≥ h, Δz · Δpz≥h.

Здесь Δx, Δy, Δz означают интервалы координат, в которых может быть локализована микрочастица (эти интервалы и есть неопределенности координат), Δpx, Δpy, Δpzозначают интервалы проекций импульса на координатные осиx, y, z, h – постоянная Планка. Согласно принципу неопределенностей, чем точнее фиксируется импульс, тем значительнее будет неопределенность по координате, и наоборот.

Принцип соответствия

По мере развития науки, углубления накопленных знаний новые теории становятся более точными. Новые теории охватывают все более широкие горизонты материального мира и проникают в ранее неизведанные глубины. Динамические теории сменяются статическими.

Каждая фундаментальная теория имеет определенные границы применимости. Поэтому появление новой теории не означает полного отрицания старой. Так, движение тел в макромире со скоростями значительно меньшими, чем скорость света, всегда будет описываться классической механикой Ньютона. Однако при скоростях, соизмеримых со скоростью света (релятивистских скоростях), механика Ньютона неприменима.

Объективно имеет место преемственность фундаментальных физических теорий. Это и есть принцип соответствия, который можно сформулировать следующим образом: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

3.4. Понятие о состоянии системы. Лапласовский детерминизм

В классической физике система понимается как совокупность каких‑то частей, связанных между собой определенным образом. Эти части (элементы) системы могут воздействовать друг на друга, и предполагается, что их взаимовоздействие всегда может оцениваться с позиций причинно‑следственных отношений между взаимодействующими элементами системы.

Философское учение об объективности закономерной взаимосвязи и взаимообусловленности явлений материального и духовного мира называют детерминизмом. Центральным понятием детерминизма является положение о существованиипричинности; причинность имеет место, когда одно явление порождает другое явление (следствие).

Классическая физика стоит на позициях жесткого детерминизма, который называют лапласовским, – именно Пьер Симон Лаплас провозгласил принцип причинности как фундаментальный закон природы. Лаплас считал, что если известно расположение элементов (каких‑то тел) системы и действующие в ней силы, то можно с полной достоверностью предсказать, как будет двигаться каждое тело этой системы сейчас и в будущем. Он писал: «Мы должны рассматривать существующее состояние Вселенной как следствие предыдущего состояния и как причину последующего. Ум, который в данный момент знал бы все силы, действующие в природе, и относительное положение всех составляющих ее сущностей, если бы он еще был столь обширен, чтобы ввести в расчет все эти данные, охватил бы одной и той же формулой движения крупнейших тел Вселенной и легчайших атомов. Ничто не было бы для него недостоверным, и будущее, как и прошедшее, стояло бы перед его глазами». Традиционно это гипотетическое существо, которое могло бы (по Лапласу) предсказать развитие Вселенной, в науке называют «демоном Лапласа».

В классический период развития естествознания утверждается представление о том, что только динамические законы полностью характеризуют причинность в природе.

Лаплас пытался объяснить весь мир, в том числе физиологические, психологические, социальные явления с точки зрения механистического детерминизма, который он рассматривал как методологический принцип построения всякой науки. Образец формы научного познания Лаплас видел в небесной механике. Таким образом, лапласовский детерминизм отрицает объективную природу случайности, понятие вероятности события.

Дальнейшее развитие естествознания привело к новым представлениям причинности и следствия. Для некоторых природных процессов трудно определить причину – например, радиоактивный распад происходит случайно. Нельзя однозначно связать время «вылета» α– или β‑частицы из ядра и значение ее энергии. Подобные процессы объективно случайны. Особенно много таких примеров в биологии. В нынешнем естествознании современный детерминизм предлагает разнообразные, объективно существующие формы взаимосвязи процессов и явлений, многие из которых выражаются в виде соотношений, не имеющих выраженных причинных связей, то есть не содержащих в себе моментов порождения одного другим. Это и пространственно‑временные связи, отношения симметрии и определенных функциональных зависимостей, вероятностные соотношения и т. д. Однако все формы реальных взаимодействий явлений образуются на основе всеобщей действующей причинности, вне которой не существует ни одного явления действительности, в том числе и так называемых случайных явлений, в совокупности которых проявляются статические законы.

Наука продолжает развиваться, обогащается новыми концепциями, законами, принципами, что свидетельствует об ограниченности лапласовского детерминизма. Однако классическая физика, в частности классическая механика, имеет и сегодня свою нишу применения. Ее законы вполне применимы для относительно медленных движений, скорость которых значительно меньше скорости света. Значение классической физики в современный период хорошо определил один из создателей квантовой механики Нильс Бор: «Как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Обоснование этого состоит просто в констатации точного значения слова «эксперимент». Словом «эксперимент» мы указываем на такую ситуацию, когда мы можем сообщать другим, что именно мы сделали и что именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики».

Принцип неопределенности. Понятие физического вакуума

Физический вакуум. Под физическим вакуумом в современной физике понимают полностью лишённое вещества пространство. Даже если бы удалось получить это состояние на практике, оно не было бы абсолютной пустотой. Квантовая теория поля утверждает, что, в согласии с принципом неопределённости, в физическом вакууме постоянно рождаются и исчезают виртуальные частицы: происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами, но не только, а также в теории могут существовать несколько различных вакуумов, различающихся плотностью энергии, и т. д.

Принцип неопределённости Гейзенберга — фундаментальное неравенство, устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задает нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики. Вернер Карл Гейзенберг (1901-1976) — немецкий физик, лауреат Нобелевской премии по физике (1932).

Краткий обзор. Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана, так и для неидеальных измерений или измерений Ландау.

Соответственно, любая частица (в общем смысле, например несущая дискретный электрический заряд) не может быть описана одновременно как «классическая точечная частица» и как волна. (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости верен в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим. Например, частица в коробке с определённым значением энергии; то есть для систем, которые не характеризуются ни каким-либо определённым «положением», ни определённым значением импульса.

Соотношения неопределённостей не ограничивают точность измерения величины, если ее оператор коммутирует сам с собой в разные моменты времени. Например, соотношение неопределённостей для свободной частицы не препятствуют точному измерению ее импульса, но не позволяет точно измерить ее координату (это ограничение называется стандартный квантовый предел для координаты).

Существует точная, количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов. Рассмотрим переменный во времени сигнал, например звуковую волну. Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может иметь и точного значения времени, как например короткий импульс, и точного значения частоты, как, например, в непрерывном чистом тоне. Временное положение и частота волны во времени походят на координату и импульс частицы в пространстве.

44. Принцип соответствия. Соотношение между классической и квантовой механиками, классической механикой и теорией относительности.

Квантовая механика (волновая механика) — теория, которая устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризуюих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Квантовая механика описывает законы движения микрочастиц.

Для классической механики характерно описание частиц путем задания их положения в пространстве (координат) и скоростей и зависимости этих величин от времени. Опыт показал, что такое описание частиц не всегда справедливо, в частности, оно не применимо для описания микрочастиц.

Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной — постоянной Планка, которая называется также квантом действия и имеет размерность действия. Если в условиях данной задачи физические величины размерности действия значительно больше постоянной Планка, то применима классическая механика. Формально это условие и является критерием применимости классической механики.

Специальная теория относительности (СТО) — теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей.

Теория относительности входит в существенное противоречие с некоторыми аспектами классической механики. Например, парадокс Эренфеста показывает несовместимость СТО с понятием абсолютно твёрдого тел. В классической физике предполагается, что механическое воздействие на твёрдое тело распространяется со скоростью звука, а отнюдь не с бесконечной скоростью (как должно быть в воображаемой абсолютно твёрдой среде).

Нильс Бор (1885-1962) — датский физик-теоретик и общественный деятель, один из создателей современной физики. Разработал принцип соответствия. Принцип соответствия — в методологии науки утверждение, что любая новая научная теория при наличии старой, хорошо проверенной теории находится с ней не в полном противоречии, а даёт те же следствия в некотором предельном приближении (частном случае). Например, закон Бойля-Мариотта является частным случаем уравнения состояния идеального газа в приближении постоянной температуры; кислоты и основания Аррениуса являются частным случаем кислот и оснований Льюиса и т.п.

Принцип соответствия в теории относительности. В специальной теории относительности в пределе малых скоростей получаются те же следствия, что и в классической механике. Так, преобразования Лоренца переходят в преобразования Галилея, время течёт одинаково во всех системах отсчёта, кинетическая энергия становится равной и т.д. Общая теория относительности даёт те же результаты, что и классическая теория тяготения Ньютона при малых скоростях и при малых значениях гравитационного потенциала .

Принцип соответствия в квантовой механике. В квантовой механике принципом соответствия называется утверждение о том, что поведение квантовомеханической системы стремится к классической физике в пределе больших квантовых чисел. Условия, при которых квантовая и классическая механики совпадают, называются классическим пределом. Бор предложил грубый критерий для классического предела: переход происходит, когда квантовые числа, описывающие систему являются большими, означая или возбуждение системы до больших квантовых чисел, или то, что система описана большим набором квантовых чисел, или оба случая. Более современная формулировка говорит, что классическое приближение справедливо при больших значениях действия .

Принцип соответствия — один из инструментов, доступных физикам для того, чтобы выбрать соответствующую действительности квантовую теорию. Принципы квантовой механики довольно широки — например, они заявляют, что состояния физической системы занимают Гильбертово пространство, но не говорят, какое именно. Принцип соответствия ограничивает выбор теми пространствами, которые воспроизводят классическую механику в классическом пределе.

45. Строение звезд

Звезда — небесное тело, в котором идут, шли или будут идти термоядерные реакции. ЗВЕЗДЫ,горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многих параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположено намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.

Дело в том, что звезды – это газовые шары, в большинстве своем – стабильные, не испытывающие ни коллапса, ни расширения. Поэтому на любой глубине давление газа равно весу вышележащих слоев, а поток излучения пропорционален перепаду температуры от внутренних горячих к наружным холодным слоям. Этих условий, сформулированных в виде математических уравнений, достаточно, чтобы на основе законов поведения газа рассчитать структуру звезды, т.е. изменение давления, температуры и плотности с глубиной. При этом из наблюдений нужно знать только массу, радиус, светимость и химический состав звезды, чтобы теоретически определить ее структуру. Расчеты показывают, что в центре Солнца температура достигает 16 млн. К, плотность 160 г/см3, а давление 400 млрд. атм.

Звезда является природной саморегулирующейся системой. Если по какой-то причине мощность энерговыделения в ядре звезды не сможет компенсировать излучение энергии с поверхности, то звезда не сможет противостоять гравитации: она начнет сжиматься, от этого повысится температура в ее ядре и возрастет интенсивность ядерных реакций – т.о. баланс энергии будет восстановлен.

46. Эволюция звезд

Звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, сжимающееся под действием собственного тяготения. При сжатии энергия гравитации переходит в тепло, и температура газовой глобулы возрастает. В прошлом столетии вообще считали, что энергии, выделяющейся при сжатии звезды, достаточно для поддержания ее светимости, но геологические данные пришли в противоречие с этой гипотезой: возраст Земли оказался значительно больше того времени, в течение которого Солнце могло бы поддерживать свое излучение за счет сжатия (ок. 30 млн. лет).

Сжатие звезды приводит к повышению температуры в ее ядре; когда она достигает нескольких миллионов градусов, начинаются термоядерные реакции и сжатие прекращается. В таком состоянии звезда пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Ресселла, пока не закончатся запасы топлива в ее ядре. Когда в центре звезды весь водород превратится в гелий, термоядерное горение водорода продолжается на периферии гелиевого ядра. ЭВОЛЮЦИЯ ЗВЕЗДЫ начинается с холодного и разреженного газо-пылевого облака и для большинства звезд заканчивается в виде сжатого силой тяжести белого карлика.

В этот период структура звезды начинает заметно меняться. Ее светимость растет, внешние слои расширяются, а температура поверхности снижается – звезда становится красным гигантом. На ветви гигантов звезда проводит значительно меньше времени, чем на главной последовательности. Когда масса ее изотермического гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; возрастающая при этом температура стимулирует термоядерное превращение гелия в более тяжелые элементы.

47. Расширяющаяся Вселенная

Вселенная – окружающий нас мир, бесконечный в пространстве, во времени и по многообразию форм заполняющего его вещества и его превращений. Вселенную в целом изучает астрономия.

► Астрономия (от греч. astron – звезда, nomos – наука) – наука о движении, строении, возникновении, развитии небесных тел, их систем и Вселенной в целом. Основной методполучения астрономических знаний – наблюдение, поскольку, за редким исключением, эксперимент при изучении Вселенной невозможен. Современная астрономия включает в себя несколько более узких научных дисциплин – астрофизику, астрохимию, радиоастрономию и др. Интенсивно развивается космология – раздел астрономии, тесно связанный с физикой.

► Космология (от греч. hosmos – мир и logos – учение) – область науки, в которой изучаются Вселенная как единое целое и космические системы как ее части. Космология близко соприкасается с космогонией (от греч. hosmos – мир, gonos – рождение), разделом астрономии, изучающим происхождение космических объектов и систем. Вселенная представляет собой упорядоченную систему отдельных взаимосвязанных элементов различного порядка. Это небесные тела (звезды, планеты, спутники, астероиды, кометы), планетные системы звезд, звездные скопления, галактики. В основе современной космологии лежит эволюционный подход к вопросам возникновения и развития Вселенной, в соответствии с которым разработана модель расширяющейся Вселенной.

Ключевой предпосылкой создания модели эволюционирующей расширяющейся Вселенной послужила общая теория относительности А. Эйнштейна (1879-1955).Объектом теории относительности выступают физические события. Физические события характеризуют понятия пространства, времени, материи, движения, которые в теории относительности рассматриваются в единстве. Исходя из единства материи, пространства и времени следует, что с исчезновением материи исчезли бы и пространство, и время. Таким образом, до образования Вселенной не было ни пространства, ни времени. Эйнштейн вывел фундаментальные уравнения, связывающие распределение материи с геометрическими свойствами пространства, с ходом времени и на их основе в 1917 г. разработал статистическую модель Вселенной.

Согласно этой модели, Вселенная обладает следующими свойствами:

· однородностью, то есть имеет одинаковые свойства во всех точках;

· изотропностью, то есть имеет одинаковые свойства по всем направлениям.

Из теории относительности следует, что искривленное пространство не может быть стационарным: оно должно или расширяться, или сужаться. Те Вселенная обладает еще одним свойством – нестационарностью. Впервые вывод нестационарности Вселенной сделал А. А. Фридман, российский физик и математик, в 1922 г.

В 1929 г. американский астроном Эдвин Хабблоткрыл так называемое красное смещение. Красное смешение – это понижение частот электромагнитного излучения: в видимой части спектра линии смешаются к его красному концу. Т обр Э. Хаббл сформулировал важный для космологии закон (закон Хаббла):Чем дальше галактики отстоят друг от друга, тем с большей скоростью они удаляются друг от друга. Это означает, что Вселенная нестационарна — находится в состоянии постоянного расширения.

48. Большой взрыв

Вселенная возникла благодаря гигантскому взрыву этой исходной космической материи – Большому взрыву Вселенной.

1) Теория : на месте Солнечной системы существовало гигантское облако пыли и газов(водорода и гелия), но тк эти газы все же обладают массой, силы притяжения стали стягивать облако в более плотное образование; в его середине образовалось огромное тела, а облако стало плоским, похожим на диск, и стало вращаться быстро, тк его размер уменьшался. Давление в теле стало огромным и оно взорвалось. После Взрыва — 4,5 лет назад возникло Солнце. Из вращающихся вокруг него остатков облака постепенно сформировались плотные кольца, в них сгусток, кот потом стал планетой.

2)Теория инфляции, или теория раздувающейся Вселенной Вселенная возникла из ничего. «Ничего» в научной терминологии называется вакуумом. Основная идея теории инфляции состоит в том, что Вселенная на ранних стадиях своего возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия, как и исходная материя, возникла из квантового вакуума, то есть из ничего.

В середине XX в. формулируется концепция горячей Вселенной После Большого взрыва, Вселенная была очень горячей: излучение доминировало над веществом. При расширении температура падала, и с некоторого момента пространство стало для излучения практически прозрачным. Излучение, сохранившееся с начальных моментов эволюции (реликтовое излучение), равномерно заполняет всю Вселенную до сих пор.В 1965 г. американские ученые А. Пензиас и Р. Вильсон нашли экспериментальное доказательство пребывания Вселенной в сверхплотном и горячем состоянии, т. е. реликтовое излучение. Одним из первых предсказал это излучение Г. Гамов(1904–1968) ипришел к концепции Большого взрыва и горячей Вселенной на ранних этапах ее эволюции.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *