Теория бесконечных вселенных

Мультивселенная

У этого термина существуют и другие значения, см. Мультивселенная (значения). Запросы «параллельный мир» и «параллельные миры» перенаправляется сюда; см. также другие значения.

Космология

Изучаемые объекты и процессы

  • Вселенная
  • Наблюдаемая Вселенная
  • Крупномасштабная структура Вселенной
    • Сверхскопления галактик
    • Галактические нити
    • Войды
    • Пузырь Хаббла
  • Реликтовое излучение
  • Скрытая масса
    • Тёмная материя
    • Тёмная энергия

История Вселенной

  • Основные этапы развития Вселенной
  • Возраст Вселенной
  • Формирование галактик

Наблюдаемые процессы

  • Расширение Вселенной
    • Космологическое красное смещение
    • Закон Хаббла
    • Ускоренное расширение Вселенной
  • Нуклеосинтез

Теоретические изыскания

  • Гравитационная неустойчивость
  • Космологический принцип
  • Космологические модели
    • Космологическая сингулярность
    • Большой взрыв
    • Модель де Ситтера
    • Модель горячей Вселенной
    • Космическая инфляция
    • Вселенная Фридмана
      • Уравнение Фридмана
      • Сопутствующее расстояние
      • Модель Лямбда-CDM
      • Космологическое уравнение состояния
      • Критическая плотность

Мультивселе́нная (реже Метавселенная) (англ. multiverse, meta-universe) — гипотетическое множество всех возможных реально существующих параллельных вселенных (включая ту, в которой мы находимся). Представления о структуре Мультивселенной, природе каждой вселенной, входящей в её состав, и отношениях между этими вселенными зависят от выбранной гипотезы. Вселенные, входящие в Мультивселенную, называются альтернативными вселенными, альтернативными реальностями, параллельными вселенными или параллельными мирами.

Различные гипотезы о существовании мультивселенной высказывались космологами, физиками, философами, религиозными деятелями и фантастами. Возможность существования мультивселенной порождает различные научные, философские и теологические вопросы. Термин «мультивселенная» был создан в 1895 году философом и психологом Уильямом Джеймсом (однако в другом контексте).

В науке

Существование Мультивселенной является предметом дискуссий среди физиков. Данная идея активно используется в теории струн (см. ландшафт теории струн), в многомировой интерпретации квантовой механики, в теории вечной инфляционной мультивселенной.

Ряд учёных высказывает мнение, что гипотеза Мультивселенной скорее философская, поскольку она не фальсифицируема (её нельзя опровергнуть с помощью научного эксперимента, а это является неотъемлемой частью научного метода), а следовательно, является ненаучной.

Космолог Макс Тегмарк высказал предположение, названное гипотезой математической вселенной, что любому математически непротиворечивому набору физических законов соответствует независимая, но реально существующая вселенная. Это предположение, хотя и не поддаётся экспериментальной проверке, привлекательно тем, что снимает вопрос, почему наблюдаемые физические законы и значения фундаментальных физических постоянных именно такие (см. тонкая настройка Вселенной).

Тегмарк предложил следующую классификацию миров:

  • Уровень 1: миры за пределами нашего космологического горизонта (внеметагалактические объекты).
  • Уровень 2: миры с другими физическими константами (например, миры на других бранах в M-теории).
  • Уровень 3: миры, возникающие в рамках многомировой интерпретации квантовой механики.
  • Уровень 4: конечный ансамбль (включает все вселенные, реализующие те или иные математические структуры).

Среди сторонников идеи Мультивселенной такие учёные, как Стивен Хокинг, Ли Смолин, Брайан Грин, Макс Тегмарк, Алан Гут, Андрей Линде, Митио Каку, Дэвид Дойч, Леонард Сасскинд, Александр Виленкин, Нил Тайсон, Шон Кэрролл, Джозеф Полчински, Мартин Рис.

Гипотезу Мультивселенной не поддерживают: Стивен Вайнберг, Дэвид Гросс, Пол Стейнхардт, Нил Турок, Вячеслав Муханов, Майкл Тёрнер, Роджер Пенроуз, Джордж Эллис, Адам Франк, Пол Дэйвис.

Н. С. Кардашёв предполагает, что, если гипотеза Мультивселенной верна, то наиболее развитые цивилизации покинули нашу Вселенную и переселились в другие, более подходящие для них.

Связь с темной энергией

Основная статья: Темная энергия

С начала 2000 годов концепция мультивселенной всерьез рассматривается в связи с изучением природы темной энергии. Модель мультивселенной, основанная на физической реальности комплексных чисел была впервые предложена советским физиком А.А. Антоновым.

Для экспериментальной проверки существующих теорий темной энергии в 2015 году в США был запущен проект Dark Energy Spectroscopic Instrument (DESI). В число проверяемых гипотез входит и гипотеза мультивселенной.

В философии и логике

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.

Модальный реализм

Возможные миры — одно из средств интерпретации вероятности, гипотетических суждений и т. п. В связи с этим ряд философов, в частности Дэвид Льюис, утверждает, что любой возможный мир реализуется, поскольку возможность и действительность — два дополнительных свойства одного и того же мира. Соответственно, что является возможностью, а что действительностью, зависит от мира, в котором находится наблюдатель (эта концепция называется «модальным реализмом»).

66. … в наималейшей части материи существует целый мир творений, живых существ, животных, энтелехий, душ.

67. Всякую часть материи можно представить наподобие сада, полного растений, и пруда, полного рыб. Но каждая ветвь растения, каждый член животного, каждая капля его соков есть опять такой же сад или такой же пруд.

68. И хотя земля и воздух, находящиеся между растениями в саду, или вода — между рыбами в пруду не есть растение или рыба, но они все-таки опять заключают в себе рыб и растения, хотя в большинстве случаев последние бывают так малы, что неуловимы для нашего восприятия.

В религии и эзотерике

Указание на существование других миров встречается в буддизме (Типитака) и многих течениях индуизма (Пураны, в том числе Бхагавата-пурана и Брахмавайварта-пурана, а также Агамы).:

В индуизме

Концепция множественных миров неоднократно упоминается в индуистских Пуранах, в частности в Бхагават-пуране:

Ты мельчайший, и Ты самый великий, Ты — начало, середина и конец бытия, но Сам не имеешь начала, середины и конца. Ты существуешь, когда не существует ничего. Ты неизменен, Ты всюду — и здесь, и там, где ничего нет. В бескрайнем пространстве плавает бесчисленное множество яйцеобразных вселенных наподобие нашей, что покрыта слоеной скорлупою стихий, каждая из которых в десять раз толще предыдущей. Но в сравнении с Тобою, безграничным Анантою, они — крошечные былинки.

— Бхагавата-Пурана 6.16.36-37 В эзотерике

В эзотерической космологии мультивселенную составляет система планов (англ.)русск. — тонких состояний сознания, которые выходят за рамки известной физической вселенной (в том числе астральный и ментальный планы).

Исследователи измененных состояний сознания утверждают, что разработали методы изучения параллельных миров с помощью так называемого «второго внимания». В традиции Карлоса Кастанеды это называется «сдвиг точки сборки». Сол Фэлкон утверждает, что восприятие других миров возможно при сдвиге «точки сборки» в области с большей частотой самофиксации. Такие состояния достигаются при помощи определённых медитаций, разнообразных духовных и психологических практик или принятием некоторых психоактивных веществ, но иногда бывают спонтанными в обычной жизни.

Мультивариативный мир — основа эзотерического учения трансерфинг реальности.

В художественных произведениях

Основная статья: Параллельные миры в фантастике

Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел.
Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 января 2017 года.

> Примечания

Литература

На русском

  • Митио Каку. Параллельные миры. Об устройстве мироздания, высших измерениях и будущем Космоса = Kaku Michio. Parallel Worlds: A Journey Through Creation, Higher Dimensions, and the Future of the Cosmos. — М.: Альпина Паблишер, 2017. — 566 p. — ISBN 978-5-91671-728-0.
  • Дойч, Дэвид. Структура реальности. Наука параллельных вселенных = David Deutsch. The Fabric Of Reality. The Science of Parallel Universes And Its Implications. — М.: Альпина нон-фикшн, 2015. — 430 p. — ISBN 978-5-91671-346-6.
    • Дойч, Дэвид. Структура реальности = David Deutsch. The Fabric Of Reality. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — 400 p. — ISBN 5-93972-040-4.
  • Сасскинд, Леонард. Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной = Leonard Susskind. The Cosmic Landscape. String Theory and the Illusion of Intelligent Design. — СПб.: Питер, 2015. — 448 p. — ISBN 978-5-496-01166-2.
  • Стенджер, Виктор. Бог и мультивселенная. Расширенное понятие космоса = Victor J. Stenger. God and the Multiverse: Humanity’s Expanding View of the Cosmos. — СПб.: Питер, 2016. — 432 p. — ISBN 978-5-496-01765-7.
  • Виленкин, Александр. Мир множества миров. Физики в поисках иных вселенных = Alexander Vilenkin. Many Worlds in One: The Search for Other Universes.. — М.: АСТ, 2018. — 288 p. — ISBN 978-5-17-111013-0.

Ссылки

  • Aurélien Barrau, Physics in the Multiverse. (англ.)
  • How many universes are in the multiverse? (англ.)
  • Скрытая реальность Параллельные миры и глубинные законы космоса (Brian Greene. The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos) Брайан Грин
  • Физики оценили число параллельных вселенных // Мембрана
  • Александр Виленкин. Одна Вселенная или множество?
  • Добро пожаловать в Мультиверс! // Эхо Москвы — Наука в фокусе
  • Проблема интерпретации понятия пространства в некоторых концепциях мультивселенных современной физики

Словари и энциклопедии

Местоположение Земли в космическом пространстве

Земля → Солнечная система → Местное межзвёздное облако → Местный пузырь → Пояс Гулда → Рукав Ориона → Млечный Путь → Подгруппа Млечного Пути → Местная группа → Местный лист → Местное сверхскопление галактик → Ланиакея → Комплекс сверхскоплений Рыб-Кита → Объём Хаббла → Метагалактика → Вселенная →? Мультивселенная

Знак «→» означает «входит в состав» или «является частью»

Теории о бесконечности Вселенной

Думаю не для кого уже не секрет, что Вселенная расширяется.

Часто мы представляем её как огромный шар, наполненный галактиками и туманностями, который увеличивается в размерах из какого-либо меньшего состояния.

Логично предположить, что в начале времён Вселенная и вовсе была сжата в точку. Тогда возникает ряд вопросов.

Что же находится за границей Вселенной?

Куда и во что она расширяется?

О какой границе идет речь?

Представим, что мы смотрим в огромный телескоп, в котором можно увидеть всё во Вселенной. Она расширяется, и галактики разбегаются от нас, причем, чем дальше находится объект, тем быстрее он удаляется. Будем смотреть дальше и дальше и на определенном расстоянии можно заметить, что все объекты удаляются от нас со скоростью света.

Они образуют так называемую сферу Хаббла. Сейчас до нее чуть менее чем 13,8 млрд. световых лет. Все, что находится за ней, удаляется от нас быстрее скорости света.

Казалось бы, этот факт противоречит теории относительности. Ведь ни одна скорость не может превышать световую.

Оказывается, нет. Речь идет не о скорости самих объектов, а о скорости расширения пространства. Это совсем разные понятия.

На каком-то расстоянии объекты удаляются настолько быстро, что мы их никогда не сможем увидеть. Фотоны, испущенные в нашу сторону, просто никогда не достигнут Земли.

Фотон словно человек, идущий против движения эскалатора, будет уноситься назад в быстро расширяющемся пространстве. Граница, где это происходит, называется горизонтом частиц. Сейчас до него около 46,5 млрд. световых лет.

Область, находящаяся внутри этой границы, называется наблюдаемой Вселенной (Метагалактикой). Все, что находится, за этой границей мы никогда не увидим. А что же за ней? Может это и есть ответы на ранее поставленные вопросы? Оказывается, что все очень прозаично.

На самом деле никакой границы нет. Вне области Метагалактики на миллиарды и миллиарды световых лет простираются такие же звезды, галактики и планеты.

Вселенная расширяется довольно таки необычно. Этот процесс происходит во всех точках пространства одинаково. Словно мы взяли координатную сетку и увеличиваем ее масштаб.

От этого и вправду кажется, что все галактики «разбегаются» от нас. Но если мы переместимся в другую галактику, то увидим такую же картину. Теперь все объекты будут удаляться от нее, то есть в любой точке Вселенной будет казаться, будто мы находимся в центре расширения. Хотя на самом деле никакого центра нет.

Поэтому, если мы окажемся рядом с горизонтом частиц, соседние галактики не будут удаляться от нас со сверхсветовой скоростью. Ведь горизонт частиц переместиться вместе с нами.

Соответственно сместятся границы наблюдаемой Вселенной, и мы увидим новые галактики ранее не доступные для наблюдения. Эту операцию можно проделывать бесконечно.

Можно раз за разом перемещаться к горизонту частиц, но тогда он сам будет смещаться, открывая взору все новые и новые просторы Вселенной. Мы никогда не сможем достичь ее границ. В итоге получается, что Вселенная действительно бесконечна. Границы имеются только у наблюдаемой ее части.

Схожий процесс можно наблюдать и на Земле. Кажется, что горизонт это граница земной поверхности. Ст ит переместиться в точку где был горизонт, окажется, что никакой границы нет.

У Вселенной нет предела, за которым отсутствовало бы пространство и время. Здесь мы сталкиваемся с понятием «бесконечности». Оно кажется не привычным, когда речь идет о материальном мире. Вселенная всегда была бесконечной и растягивается, продолжая оставаться бесконечной.

Она может это делать, потому что у пространства нет элементарной частицы. Оно может растягиваться сколь угодно долго. Вселенной не нужны границы и области, куда бы она смогла расширяться.

Этого «куда» просто не существует. Можно сказать, что Вселенная будто расширяется «сама в себе», добавляя внутри себя новое пространство и отодвигая материю раз за разом. В этом и есть суть бесконечности. Этот парадокс можно объяснить примером отеля Гилберта. Представьте отель с бесконечным количеством комнат и бесконечным количеством жителей в нем. Пришел новый житель, и чтобы его поселить нужно жителя с первой комнаты переселить во вторую, жителя из второй комнаты в третью и так далее.

В итоге получится что в отеле всегда найдется комната для нового клиента.

Тот же самый процесс не происходит в нашей системе и ,например, внутри наших тел, потому что этому препятствует гравитация.

Поэтому в той части Вселенной, где больше материи расширение медленней, до тех пор пока гравитация не преодолеет расширение и не обернет его вспять, заставив материю «слепиться в комок». В солнечной системе как и в галактике не осталось силы расширения.

А что насчет теории Большого взрыва? Разве она не была сжата в одну точку? Сжата была лишь наблюдаемая часть Вселенной, а в целом она никогда не имела границ.

Чтобы понять это представим Вселенную в миллиардные доли секунды после Большого взрыва, когда наблюдаемая ее часть была размером с футбольный мяч. Даже тогда при перемещении к горизонту частиц вся наблюдаемая Вселенная будет сдвигаться.

То же самое можно проделать и раньше. Таким образом, перемещаясь во времени назад, мы будем все ближе подходить к Большому взрыву.

Но при этом каждый раз мы будем обнаруживать, что Вселенная бесконечна. В любой момент времени даже в момент Большого взрыва. Получается, что он произошел не в конкретной точке, а везде, в каждой точке бесконечной Вселенной.

Если Вселенная действительно бесконечна и может расширяться бесконечно, то может ли произойти так, что она начнет наоборот сжиматься? Этот момент уже возможен для экспериментального наблюдения.

Определенный параметр даст нам понять будет расширяться или сжиматься Вселенная – средняя плотность вещества.

Если плотность будет меньше какого – либо критического значения, Вселенная будет постоянно расширяться, но если плотность будет больше критического значения, то в определенный момент времени расширение прекратиться и пойдет обратный процесс.

Ученые выяснили, что на данный момент эта плотность равна с некоторой долей погрешности критической.

Конечно же, это только теории. Они достаточно согласованы и логичны, но не лишены недостатков.

В каком состоянии находилось вещество в момент Большого взрыва? Что было до него? Почему же он произошел? На эти вопросы четких ответов пока нет. И таких вопросов еще очень много. Возможно, наше поколение станет свидетелем разгадки этих тайн.

У этого термина существуют и другие значения, см. Мультивселенная (значения).

Космология

Изучаемые объекты и процессы

  • Вселенная
    • Наблюдаемая Вселенная
    • Возраст Вселенной
  • Крупномасштабная структура Вселенной
    • Формирование структуры
  • Реликтовое излучение
  • Тёмная энергия
  • Скрытая масса

Наблюдаемые процессы

  • Космологическое красное смещение
  • Расширение Вселенной
  • Формирование галактик
  • Закон Хаббла
  • Нуклеосинтез

Теоретические изыскания

  • Космологические модели
    • Космическая инфляция
    • Большой взрыв
      • Хронология Большого взрыва
    • Вселенная Фридмана
      • Сопутствующее расстояние
    • Модель Лямбда-CDM‎
  • Космологический принцип
  • Космологическое уравнение состояния
  • Критическая плотность
  • Хронология космологии

Мультивселе́нная (англ. multiverse, англ. meta-universe) — гипотетическое множество всех возможных реально существующих параллельных вселенных (включая ту, в которой мы находимся). Представления о структуре такой мультивселенной, природе каждой вселенной, входящей в её состав, и отношениях между этими вселенными зависят от выбранной гипотезы.

Различные гипотезы о существовании мультивселенной высказывались специалистами по космологии и астрономии, физиками, философами, фантастами.

Термин «мультивселенная» был создан в 1895 году философом и психологом Уильямом Джеймсом (William James) и популяризирован писателем-фантастом Майклом Муркоком. Часто используются также такие термины, как «альтернативные вселенные», «альтернативные реальности», «параллельные вселенные» или «параллельные миры».

Возможность существования мультивселенной порождает различные научные, философские и теологические вопросы. Данная идея активно используется, например, в теории струн. Предположение о существовании мультивселенной используется также в многомировой интерпретации квантовой механики.

Классификация Тегмарка

Макс Тегмарк высказал предположение, что любому математически непротиворечивому набору физических законов соответствует независимая, но реально существующая вселенная. Это предположение, хотя и не поддаётся экспериментальной проверке, привлекательно тем, что снимает вопрос, почему наблюдаемые физические законы и значения фундаментальных физических постоянных именно такие (см. тонкая настройка Вселенной).

Тегмарк предложил следующую классификацию миров, за пределами нашего:

  • Уровень 1: миры за пределами нашего космологического горизонта
  • Уровень 2: миры с иными физическими законами
  • Уровень 3: многомировая интерпретация квантовой механики

Включает вселенные, возникающие в рамках многомировой интерпретации квантовой механики.

  • Уровень 4: конечный ансамбль

Включает все вселенные, реализующие те или иные математические структуры.

Модальный реализм

Возможные миры — одно из средств интерпретации вероятности, гипотетических суждений и т. п. В связи с этим, ряд философов, в частности Дэвид Льюис (англ.), утверждает, что любой возможный мир реализуется, поскольку возможность и действительность — два дополнительных свойства одного и того же мира. Соответственно, что является возможностью, а что действительностью, зависит от мира, в котором находится наблюдатель (эта концепция называется «модальным реализмом»).

Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.

В религиозных традициях

Индуизм

Концепция множественных миров неоднократно упоминается в индуистких Пуранах, в частности в Бхагават-пуране:

Ты существуешь в начале, в середине и в конце всего, от самой маленькой частички космического проявления — атома — до гигантских вселенных и всей материальной энергии. Тем не менее, Ты вечен, не имея начала, конца или середины. Ты воспринимаешься, чтобы существовать в трех этих фазах, и таким образом Ты являешься неизменным. Когда это космическое проявление не существует, Ты существуешь, как изначальная потенция… Есть бесчисленные вселенные за пределами этой, и несмотря на то, что они бесконечно велики, они вращаются в Тебе, подобно атомам.

— Пхагавата-Пурана 6.16.36-37

> В художественных произведениях Основная статья: Параллельные миры в фантастике > См. также

  • Многомировая интерпретация

Примечания

  1. Грин, Брайан. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ / Под ред. В. О. Малышенко. — 3-е изд. — М.: Едиториал УРСС, 2007. — С. 236—239. — 288 с. — ISBN 5-484-00784-4
  2. Библиотека РГИУ ::: Философия возможного :::
  3. http://www.philosophy.ru/library/asiatica/indica/purana/bhagavata/rus/sb6txt/book06.html

> Литература

Местоположение Земли в космическом пространстве

Земля → Солнечная система → Местное межзвёздное облако → Местный пузырь → Рукав Ориона → Млечный Путь → Местная группа → Местное сверхскопление галактик → Наблюдаемая Вселенная → Вселенная →? Мультивселенная

Знак «→» означает «входит в состав» или «является частью»

5 теорий, предполагающих, что мы живем в Мультивселенной

12 050

  • Total: 8
  • 0
  • 3
  • 2
  • 0
  • 0
  • 0
  • 0

Вселенная, в которой мы живем, может быть не единственной. По сути, наша Вселенная может быть только одной из бесконечного числа вселенных, образующих «мультивселенную».
Некоторые эксперты считают, что существование скрытых вселенных более вероятно, чем нет.

Вот пять наиболее правдоподобных научных теорий, предполагающих, что мы живем в Мультивселенной:

1. Бесконечные Вселенные

Ученые пока не уверены, какую форму имеет пространство-время, но, скорее всего, оно плоское (в отличие от сферической и даже пончиковой формы) и тянется бесконечно. Но если пространство-время бесконечно, то оно должно начать повторяться в какой-то момент, потому что есть конечное количество способов, как частицы могут быть устроены в пространстве и времени.

Так что если бы вы могли посмотреть достаточно далеко, вы бы увидели еще одну версию себя — на самом деле, бесконечное количество версий. Некоторые из этих близнецов будут делать именно то, что вы делаете прямо сейчас, в то время как другие будут носить этим утром другой свитер, а третьи и четвертые будут иметь совершенно разные карьеры и образ жизни.

Поскольку наблюдаемая Вселенная простирается лишь настолько, насколько свет имеет шанс попасть за 13,7 млрд. лет после большого взрыва (13,7 млрд световых лет), пространство-время за пределами этого расстояния можно считать своей собственной, отдельной вселенной. Таким образом, множество вселенных существует рядом друг с другом в гигантской мозаике из вселенных.

Пространство-время может растянуться до бесконечности. Если это так, то все в нашей Вселенной обязано повториться в какой-то момент, создавая лоскутное одеяло из бесконечных вселенных.

2. Дочерние вселенные

Теория квантовой механики, которая правит в крошечном мире субатомных частиц, предлагает еще один способ возникновения множественных вселенных. Квантовая механика описывает мир в терминах вероятности, без конкретных результатов. И математика этой теории предполагает, что все возможные исходы ситуации происходят в их собственных отдельных вселенных. Например, если вы достигнете перекрестка, где вы можете пойти направо или налево, вселенная порождает две дочерние вселенные: одна, в которой вы идете направо, другая — налево.

«И в каждой Вселенной, есть копия вас, как свидетеля того или иного результата. Думать, что ваша реальность является единственной реальностью, — неправильно.»

— Написал Брайан Рэндолф Грин в «Скрытой реальности».

3. Вселенная Пузырь

Помимо множественных вселенных, созданных бесконечно расширяющемся пространством-временем, другие вселенные могут возникать в связи с так называемой теорией «вечной инфляции». Понятие инфляции заключается в том, что Вселенная быстро расширяется после Большого взрыва, словно надуваемый воздушный шар. Вечная инфляция, впервые предложенная космологом университета Тафтса Александром Виленкиным, говорит о том, что отдельные участки пространства перестают раздуваться, тогда как в других регионах продолжают раздуваться, тем самым порождая множество изолированных «пузырчатых вселенных».

Таким образом наша собственная вселенная, где инфляция закончилась, позволив сформироваться звездам и галактикам, является всего лишь маленьким пузырем в обширном море пространства, часть из которого все еще раздувает, и которая содержит много других пузырей, как наша Вселенная. И в некоторых из этих вселенных пузырей, законы физики и фундаментальных констант могли бы отличаться от наших, делая некоторые вселенные действительно странными местами.

4. Математические Вселенные

Ученые спорят о том, является ли математика просто полезным инструментом для описания Вселенной, или сама математика является фундаментальной действительностью, и наши наблюдения за Вселенной — просто несовершенное восприятие ее истинного математического характера. Если последний случай имеет место, то, возможно, конкретная математическая структура, которая составляет нашу вселенную, не является единственным выбором, и на самом деле все возможные математические структуры существуют как свои собственные отдельные вселенные.

«Математическая структура — это нечто, что можно описать таким образом, что это полностью зависит от человеческого багажа», — сказал Макс Тегмарк из Массачусетского технологического института, который предложил эту, на первый взгляд, безумную идею.

«Я действительно верю, что эта существующая Вселенная может существовать независимо от меня, и будет продолжать существовать, даже если бы не было никаких людей.»

5. Параллельные Вселенные

Еще одна идея, которая возникает из теории струн, является понятие «braneworlds» (мир бран) — параллельные вселенные, которые парят вне досягаемости наших собственных, предложенная Паулем Штайнхардтом Принстонского университета и Нилом Туроком из Института Периметра Теоретической Физики в Онтарио, Канада. Идея исходит из возможности существования многих других измерений в нашем мире, чем трехмерное пространство и одно время, которое мы знаем. В дополнение к нашему трехмерному брану пространства, другие трехмерные браны могут плавать в пространстве большей размерности.

Физик Колумбийского университета Брайан Грин в своей книге «Скрытая Действительность» описывает идею как понятие, что «наша вселенная — одна из потенциально многочисленных ‘плит’, плавающих в более многомерном космосе, во многом как кусок хлеба в более великой космической буханке».

Данная теория предполагает, что эти браны вселенные — не всегда параллельны и вне досягаемости. Иногда, они могли бы врезаться друг в друга, вызывая повторные Большие взрывы, которые перезагружают Вселенную много раз.

Даже физиков раздражает теория мультивселенной

Что вы думаете по поводу мультивселенной? Вопрос не был совсем уж неожиданным для нашей импровизированной лекции за обеденным столом, но он застал меня врасплох. Не то, чтобы меня никогда раньше не спрашивали о мультивселенной, но объяснять теоретическую конструкцию – это одно, а объяснять свои чувства к ней – совсем другое. Я могу озвучить все стандартные аргументы и главные вопросы по мультивселенной, я могу ориентироваться в фактах и технических подробностях, но в результатах я теряюсь.
Физики не привыкли говорить о том, как они относятся к чему-то. Мы за твёрдое знание, количественные оценки и эксперименты. Но даже лучшие из беспристрастных анализов начинаются только после того, как мы решаем, в какую сторону нам идти. В зарождающейся области обычно возникает выбор из возможностей, у каждой из которых есть свои достоинства, и часто мы выбираем одну из них инстинктивно. Этот выбор определяется эмоциональными рассуждениями, стоящими над логикой. То, с какой позицией вы ассоциируете себя, это, как говорит физик из Стэнфордского университета Леонард Сасскинд, «больше, чем просто научные факты и философские принципы. Это вопрос хорошего вкуса в науке. И, как и все споры о вкусах, в нём участвуют эстетические чувства».
Сам я занимаюсь теорией струн, и одной из её особенностей является возможность существования множества логически непротиворечивых вариантов вселенных, отличных от нашей. Процесс, создавший нашу Вселенную, может создать и те, другие, что приводит к бесконечному количеству вселенных, где происходит всё, что может произойти. Последовательность рассуждений начинается со знакомого мне места, и я могу следовать завитушкам, которые проделывают уравнения в своём танце на странице, приводящем к этому заключению, но, хотя я представляю себе мультивселенную, как математическую конструкцию, я не могу поверить, что она вдруг выскочит из области теорий и проявит себя в реальности. Как я могу притворяться, что у меня нет проблем с бесконечным количеством копий меня самого, расхаживающих по параллельным мирам, и принимающих решения, как схожие, так и отличающиеся от моих?
Я не один такой двойственный. Дебаты по поводу мультивселенной были горячими, и она остаётся источником противоречий среди самых выдающихся учёных нашего времени. Дебаты по мультивселенной – это не просто обсуждение частностей теории. Это борьба по теме идентичности и результатов, по поводу того, на чём основывается объяснение, из чего состоит доказательство, как мы определяем науку, и есть ли во всём этом смысл.
Когда бы я ни рассказывал о мультивселенной, на один из неизбежно возникающих вопросов у меня есть ответ. Живём ли мы во вселенной или мультивселенной, эти классификации относятся к масштабам, размер которых выходит за рамки воображения. Вне зависимости от результата, жизнь вокруг нас не изменится. Так какая разница?
Разница есть, поскольку то, где мы находимся, влияет на то, кто мы есть. Разные места приводят к разным реакциям, из которых возникают различные возможности. Один объект может выглядеть по-разному на разном фоне. Мы определяемся тем пространством, которое мы населяем, гораздо большим количеством способов, чем мы осознаём. Вселенная – это предел расширения. Она содержит все места действия, все контексты, в которых мы можем представить бытие. Она представляет общую сумму возможностей, полный набор всего, чем мы можем быть.
Измерение имеет смысл только в системе отсчёта. Числа очевидно абстрактны, пока им не назначены единицы измерения, но даже такие размытые определения, как «слишком далеко», «слишком маленький», «слишком странный» подразумевают некую систему координат. Слишком далеко подразумевает точку отсчёта. Слишком маленький относится к шкале. Слишком странный подразумевает контекст. В отличие от всегда объявляемых единиц измерения, система отсчёта предположений определяется редко, но всё-таки значения, присваиваемые вещам – объектам, явлениям, опыту – откалиброваны по этим невидимым осям.
Если мы обнаружим, что всё что мы знаем и можем узнать, находится всего лишь в одном из карманов мультивселенной, сдвинется весь фундамент, на котором мы расположили нашу координатную сетку. Наблюдения не изменятся, но изменятся выводы. Наличие других пузырьковых вселенных возможно и не окажет влияния на те измерения, что мы проводим, но может повлиять на то, как мы их интерпретируем.
Первое, что поражает в мультивселенной – её необъятность. Она больше, чем что-либо, с чем имело дело человечество – такое возвеличивание подразумевается в самом названии. Можно было бы понять, если бы эмоциональная реакция на мультивселенную происходила бы от чувства собственного преуменьшения. Но размер мультивселенной, наверное, наименее противоречивое из её свойств.
Жиан Жудис , глава теоретиков ЦЕРН, говорит от имени физиков, когда утверждает, что один взгляд в небо прочищает нам мозги. Мы уже представляем себе наши масштабы. Если мультивселенная существует, то, как он говорит, «проблема противопоставления меня и необъятности вселенной не изменится». Многих даже успокаивает такая космическая перспектива. По сравнению со вселенной все наши проблемы и жизненные драмы уменьшаются так сильно, что «всё, что здесь происходит, не имеет никакого значения», говорит физик и автор Лоуренс Краусс . «Меня это очень утешает».

От потрясающих фотографий, сделанных телескопом им. Хаббла, до поэм Октавио Паса об «обширной ночи» и «галактической песни» Монти Пайтонов, существует романтизм, связанный с нашим лилипутским масштабом. В какой-то момент нашей истории мы смирились с нашей бесконечной малостью.

Не из-за нашей ли боязни масштабов мы так неохотно принимаем понятие мультивселенной, включающее миры, находящиеся вне нашего поля зрения, и обречённые там находиться? Это, конечно, очень частая жалоба, которую я слышу от моих коллег. Южноафриканский физик Джордж Эллис, сильно возражающей против мультивселенной, и британский космолог Бернард Карр, настолько же сильно за неё агитирующий, обсуждали эти вопросы в нескольких очаровательных разговорах. Карр считает, что их точка расхождения относится к тому, «какие свойства науки необходимо считать неприкосновенными». Обычным показателем служат эксперименты. Сравнительные наблюдения – допустимая замена. Астрономы не в состоянии управлять галактиками, но обозревают их миллионами, в разных формах и состояниях. Ни один из методов не подходит мультивселенной. Лежит ли она, в таком случае, за пределами научной области?
Сасскинд, один из отцов теории струн, обнадёживает нас. В эмпирической науке существует третий подход: делать выводы о невидимых объектах и явлениях из того, что мы в состоянии увидеть. Для примера достаточно будет взять субатомные частицы. Кварки навечно связаны в протоны, нейтроны и другие составные частицы. «Они, так сказать, скрыты за завесой,- говорит Сасскинд,- но сейчас, хотя ни единого изолированного кварка мы не видели, никто всерьёз не будет подвергать сомнению правильность теории кварков. Это часть фундамента современной физики».
Поскольку Вселенная расширяется с ускорением, галактики, находящиеся сейчас на горизонте поля зрения, вскоре исчезнут за ним. Мы не считаем, что они уйдут в небытие, так же, как мы не считаем, что корабль будет дезинтегрирован, скрывшись за горизонтом. Если известные нам галактики могут существовать в отдалённых районах за пределами поля зрения, кто скажет, что там не может быть и чего-то другого? Вещей, которые мы никогда не видели, и никогда не увидим? Как только мы признаем возможность существования регионов, находящихся вне нашего кругозора, последствия вырастают экспоненциально. Британский королевский астроном Мартин Рис сравнивает эту линию рассуждений с терапией, направленной на выработку отвращения. Когда вы признаёте наличие галактик вне нашего текущего горизонта, вы «начинаете с маленького паука, находящегося очень далеко», но, вы не успеете оглянуться, как дадите волю возможности существования мультивселенной, населённой бесконечными мирами, возможно, сильно отличающимися от вашего – то бишь, «найдёте тарантула, ползающего по вам».
Отсутствие возможности напрямую управлять объектами никогда не было моим персональным критерием определения пригодности физической теории. Если что-то и волнует меня по поводу мультивселенной, уверен, к этому оно отношения не имеет.
Мультивселенная бросает вызов ещё одному дорогому нам представлению – уникальности. Может ли это быть причиной проблем? Как поясняет космолог Александр Виленкин, неважно, насколько велик наблюдаемый регион, пока он конечен, он может находиться в конечном числе квантовых состояний. И описание этих состояний однозначно определяет содержимое региона. Если этих регионов бесконечно много, то то же самое состояние обязательно будет воспроизведено где-то ещё. Даже наши слова будут точно воспроизведены. Поскольку процесс продолжается в бесконечность, наших копий тоже будет бесконечное количество.
«Наличие этих копий вгоняет меня в депрессию,- говорит Виленкин. – У нашей цивилизации есть много отрицательных черт, но мы хотя бы могли заявлять об её уникальности – как о произведении искусства. А теперь мы и этого не можем сказать». Я понимаю, что он имеет в виду. Это волнует и меня, но не уверен, что именно эта мысль лежит в основе моей неудовлетворённости. Как говорит с тоской Виленкин, «Я недостаточно самонадеян, чтобы говорить реальности, какой она должна быть».
Главная загадка дебатов заключается в странной иронии. Хотя мультивселенная увеличивает нашу концепцию физической реальности до почти невообразимого размера, она вызывает чувство клаустрофобии, поскольку проводит границу нашего знания и наших возможностей получения знаний. Теоретики мечтают о мире без своевольности, описываемом самодостаточными уравнениями. Наша цель – найти логически полную теорию, сильно ограниченную самодостаточностью, и принимающую только одну форму. Тогда для нас, даже не знающих, откуда или почему взялась эта теория, её структура не будет выглядеть случайной. Все фундаментальные константы природы появятся «из математики, числа π и двоек», как говорит физик из Беркли Рафаэль Буссо .
В этом притягательность Общей теории относительности Эйнштейна – причина, по которой физики всего мира восклицают из-за её необычной бессмертной красоты. Соображения симметрии диктуют уравнения так чётко, что теория кажется неизбежной. Именно это мы хотели повторить в других областях физики. И пока у нас ничего не получилось.
Десятилетиями учёные ищут физические причины того, почему фундаментальные константы обязаны принимать именно такие значения, какие у них имеются, но пока ещё ни одной причины обнаружено не было. И вообще, если мы используем имеющиеся теории, чтобы вычислять возможные значения некоторых из известных параметров, результаты оказываются до смешного далеки от измеренных величин. Но как же объяснить эти параметры? Если существует всего одна-единственная вселенная, то управляющие ей параметры должны быть облечены особым значением. Либо процесс, управляющий выбором параметров, случаен, либо в нём есть некая логика, или даже продуманная цель.
Ни один из вариантов не выглядит привлекательно. Мы, учёные, проводим жизнь в поисках законов, поскольку считаем, что всё происходит по какой-то причине, даже если она нам неизвестна. Мы ищем закономерности, потому что верим в некий порядок во вселенной, даже если не видим его. Чистая случайность не вписывается в это мировоззрение.
Но говорить о разумном плане тоже не хочется, ведь это подразумевает существование некоей силы, предшествовавшей законам природы. Эта сила должна выбирать и судить, что, в отсутствие такой чёткой, сбалансированной и жёстко ограниченной структуры, как, например, ОТО, подразумевает произвол. В идее о возможности существования нескольких логически непротиворечивых вселенных, из которых была выбрана только одна, есть что-то откровенно неудовлетворительное. Если бы это было так, то, как говорит космолог Деннис Сциама , придётся думать, что «существует некто, изучающий такой список, и приговаривающий, ‘Нет, такой вселенной у нас не будет, и такой не будет. Будет только вот такая'».

Лично меня такой вариант, со всеми его подтекстами по поводу того, что могло бы быть, огорчает. На ум приходят различные сцены: брошенные дети в приюте из какого-то забытого фильма, когда одного из них усыновляют; лица людей, лихорадочно стремившихся к мечте, но не достигших её; выкидыши в первом триместре. Такие вещи, которые почти уже родились, но не смогли, мучают меня. Если не существует теоретического ограничения, исключающего все возможности, кроме одной, такой выбор кажется жестоким и несправедливым.
В таком тщательно настроенном творении как объяснить ненужные страдания? Поскольку эти философские, этические и моральные проблемы не относятся к области физики, большинство учёных избегает их обсуждений. Но нобелевский лауреат Стивен Вайнберг высказался от их имени: «Есть ли в нашей жизни следы великодушного творца – на этот вопрос каждый ответит для себя. Моя жизнь была удивительно счастливой. Но всё равно, я видел, как моя мать мучительно умирала от рака, как болезнь Альцгеймера разрушала личность отца, и как множество двоюродных и троюродных родственников было убито при Холокосте. Признаки присутствия великодушного творца очень хорошо спрятаны».
Перед лицом боли принять случайность гораздо легче, чем чёрствое игнорирование или намеренное злодеяние, присутствующее в дотошно продуманной вселенной.
Мультивселенная обещала отвлечь нас от этих ужасных мыслей, дать нам третий вариант, побеждающий дилемму объяснения.
Конечно, мультивселенную физики придумали не для этого. Она появилась из других соображений. Теория космической инфляции должна была объяснить широкомасштабную гладкость и отсутствие кривизны Вселенной. «Мы искали простое объяснение тому, почему Вселенная похожа на большой шар,- говорит физик из Стэнфорда Андрей Линде. – Мы не знали, что что-то пойдёт к этой идее в нагрузку». Нагрузкой стало понимание того, что наш Большой взрыв был не уникальным, и что, вообще-то, должно существовать бесконечное количество таких взрывов, каждый из которых создаёт не связанное с нашим пространство-время.
Затем появилась теория струн. На сегодня это лучший кандидат на объединённую теорию всего. Она не только достигает невозможного – примирения гравитации и квантовой механики – но просто-таки настаивает на этом. Но для схемы, уменьшающей невероятное разнообразие вселенной до минимального набора строительных кирпичиков, теория струн страдает от унизительной проблемы: мы не знаем, как определить точные значения фундаментальных констант. По текущим прикидкам, существует потенциальных возможностей – неизмеримо огромное число, для которого у нас даже нет названия. Теория струн перечисляет все формы, которые способны принять законы физики, и инфляция даёт возможность для их реализации. С рождением каждой новой вселенной тасуется воображаемая колода карт. Розданная рука определяет законы, управляющие вселенной.
Мультивселенная объясняет, каким образом константы из уравнений приобрели присущие им значения, не привлекая случайность или разумный выбор. Если есть множество вселенных, в которых реализованы все возможные законы физики, мы получаем именно такие значения при измерениях, потому что наша вселенная находится именно на этом месте ландшафта. Никакого более глубокого объяснения нет. Всё. Это и есть ответ.
Но, освобождая нас от старой дихотомии, мультивселенная оставляет нас в тревожном состоянии. У вопроса, над которым мы бились так долго, может не быть более глубокого ответа, чем «так всё устроено». Возможно, это лучшее, что мы можем сделать, но мы к таким ответам не привыкли. Он не срывает покровы и не объясняет, как всё работает. Более того, он разбивает мечту теоретиков, утверждая, что уникального решения найти нельзя, поскольку его не существует.
Некоторым людям не по душе такой ответ, другие считают, что это и ответом-то назвать нельзя, а иные просто принимают его.
Нобелевскому лауреату Дэвиду Гроссу кажется, что мультивселенная «попахивает ангелами». Он говорит, что принятие мультивселенной сродни тому, что вы сдаётесь, принимая, что вы никогда ничего не поймёте, потому что всё наблюдаемое можно свести к «исторической случайности». Его коллега по нобелевке, Герард ’т Хоофт, жалуется, что не может принять сценарий, по которому нужно «перебирать все решения, пока не найдёте соответствующее нашему миру». Он говорит: «физики не работали так в прошлом, и ещё можно надеяться, что в будущем у нас появятся доказательства получше».
Космолог из Принстона, Пол Стейнхардт называет мультивселенную «теорией чего угодно», потому что она всё допускает и ничего не объясняет. «Научная теория обязана быть избирательной,- говорит он. – Её сила в исключаемом количестве возможностей. Если она включает все возможности, то не исключает ничего, и сила её нулевая». Стейнхардт был одним из ранних сторонников инфляции, пока не понял, что она приводит к мультивселенной, и порождает пространство возможностей, вместо того, чтобы делать конкретные предсказания. С тех пор он стал одним из самых громких критиков инфляции. В недавнем эпизоде Star Talk он представился, как поборник альтернатив мультивселенной. «Чем вам так насолила мультивселенная? — пошутил ведущий. – Она уничтожила одну из моих любимых идей», ответил Стейнхардт.
Физики должны были заниматься истиной, абсолютными понятиями, предсказаниями. Либо вещи такие, либо не такие. Теории не должны быть гибкими или инклюзивными, они должны быть ограничивающими, строгими, исключающими варианты. Для любой ситуации хочется иметь возможность предсказать вероятный – а в идеале, единственный и неизбежный – результат. Мультивселенная ничего такого нам не даёт.
Дебаты по поводу мультивселенной часто выливаются в шумные споры, где скептики обвиняют поборников идеи в предательстве науки. Но важно осознать, что такое положение вещей никто не выбирал. Всем хочется вселенную, органически возникающую из прекрасных глубоких принципов. Но из того, что нам известно, в нашей вселенной такого нет. Она такая, какая есть.
Нужно ли спорить против идеи мультивселенной? Должна ли она остаться на вторых ролях? Многие мои коллеги пытаются представить её в более выгодном свете. Логически рассуждая, с бесконечным количеством вселенных работать проще, чем с одной – меньше вещей приходится объяснять. Как говорил Сциама, мультивселенная «в каком-то смысле удовлетворяет бритве Оккама, поскольку вам хочется минимизировать количество случайных ограничений, налагаемых на вселенную». Вайнберг говорит, что теория, свободная от произвольных предположений, и не подвергавшаяся «тщательной подстройке для соответствия наблюдениям», красива сама по себе. Может оказаться, что эта красота сходна с красотой термодинамики, со статистической красотой, объясняющей состояние макроскопической системы, но не каждой из её отдельных компонент. «В поисках красоты нельзя быть заранее уверенным в том, где вы её обнаружите, или какую именно красоту найдёте», говорит Вайзенберг.

Много раз, когда я размышлял над этими сложными интеллектуальными проблемами, мысли мои возвращались к простой и прекрасной мудрости Маленького принца из произведения Антуана де Сент-Экзюпери, который, считая свою любимую розу единственной для всех миров, оказался в розовом саду. Сбитый с толку таким предательством и огорченный утратой важности – его розы и себя самого – он плачет. В итоге он понимает, что его роза «важнее сотен остальных», потому что она его.
В нашей Вселенной может не быть ничего особенного, кроме того, что она наша. Разве этого не достаточно? Даже если все наши жизни и всё, что мы можем познать, окажутся незначительными в масштабах космоса, они всё же наши. Есть что-то особенное в здесь и сейчас, в том, что нечто – моё.
Несколько раз за последние месяцы я воспроизводил в уме мой разговор с Жианом Жудисом. Я находил уверенность в том, как спокойно он относился к огромному количеству возможных вселенных и вроде бы случайных выборах, сделанных нашей. Возможно, мультивселенная просто сообщает нам, что мы работаем не над теми вопросами, говорит он. Возможно, как Кеплер с орбитами планет, мы пытаемся найти в числах более глубокий смысл, чем там есть.
Поскольку Кеплер знал лишь о существовании Солнечной системы, он считал, что в форме орбит планет и в расстояниях между ними скрыта какая-то важная информация, но оказалось, что это не так. Эти значения не были фундаментальными, они были просто данными об окружении. В то время это могло показаться прискорбным, но с точки зрения ОТО мы уже не испытываем чувства потери. У нас есть прекрасное объяснение гравитации. Просто в этом объяснении значения, связанные с орбитами планет, не являются фундаментальными константами.
Возможно, говорит Жудис, мультивселенная подразумевает нечто похожее. Может, нам надо отказаться от того, за что мы хватаемся. Может, нужно мыслить шире, перегруппироваться, поменять вопросы, задаваемые нами природе. По его словам, мультивселенная может открыть «чрезвычайно удовлетворительные, приятные и расширяющие взгляд возможности».
Из всех аргументов в пользу мультивселенной этот нравится мне больше всего. В любом сценарии в любой физической системе можно задать бесконечно много вопросов. Мы пытаемся распутать проблему до её основ и спрашивать самые базовые вопросы, но наша интуиция построена на том, что было раньше, и возможно, что мы основываемся на парадигмах, уже не имеющих отношения к новым областям, которые мы пытаемся изучить.
Мультивселенная больше похожа на ключ, чем на закрытую дверь. С моей точки зрения, мир окрасился надеждой и наполнился возможностями. Он не более расточителен, чем беседка, полная роз.

Если параллельные вселенные существуют, как найти доказательства?

Представьте себе физика, сидящего в клетке с ружьем, направленным прямо на его голову. Каждые несколько секунд измеряется направление спина случайной частицы в комнате. Если спин направлен в одну сторону, то ружье стреляет и физик умирает. Если же в другую, то раздается только звук щелчка и физик выживает. Получается, шансы на выживание физика — 50 на 50, верно?

Все может быть не так просто, если мы живем в мультивселенной — то есть кроме нашей вселенной, которую мы зовем родной, существуют многие другие.

Со сценария с физиком и ружьем начинается знаменитый мысленный эксперимент под названием «квантовый суицид», и это один из способов попытаться понять, живем ли мы только в одной из многих (и потенциально бесконечных) вселенных.

Этот мысленный эксперимент опирается на квантовую механику и идею того, что единой объективной реальности не существует. Все, что мы видим вокруг, это лишь одна из возможных конфигураций всех вероятностей того, что произойдет то или иное событие. Одна из интерпретаций квантовой механики заключается в том, что все другие наборы вероятностей могут существовать в своих собственных отдельных вселенных. Так что если вы проследите за мысленным экспериментом, учитывая эту интерпретацию, то когда вы измерите вторую частицу, вселенная разделится на две, в каждой из которых будет свой возможный вариант свершения событий: в котором физик жив и в котором физик умер.

Его выживание теперь связано с квантовой вероятностью, так что он как бы и жив и умер одновременно — просто в разных вселенных. Если новая вселенная расщепляется каждый раз, когда измеряется частица, а ружье либо стреляет, либо нет, то в одной из таких вселенных в конечном итоге физик выживет, скажем, в ходе 50 измерений частиц. Сравнить это можно с брошенной 50 раз кряду монеткой. Вероятность того, что 50 раз подряд выпадет решка, чрезвычайно мала, но она есть — шанс стремится к нулю.

И если это произойдет, физик поймет, что мультивселенная реальна, и в конкретном случае — в описанном эксперименте — физик воистину бессмертен, так как ружье никогда не выстрелит. Но он также станет единственным человеком, который знает, что эти параллельные вселенные существуют. Да и сколько физиков придется «потратить», чтобы выяснить это наверняка.

Впрочем, существуют и другие, более разумные версии множественных вселенных, которые подкреплены математикой и потенциально проверяемы.

«Для некоторых людей параллельные вселенные — это как прыжок через портал в другой мир или что-то вроде этого, — говорит Мэтью Джонсон, физик из Института Периметра. — Но это совсем другое».

Фактические наблюдаемые свидетельства существования множественных вселенных будет сложно отыскать, но возможно. И вот как физики планируют это проделать.

Версии мультивселенной

На самом деле теорий множественной вселенной существует довольно много, и мультивселенная из мысленного эксперимента с «квантовым самоубийством», где каждая возможность становится реальностью, одна из наиболее радикальных.

Физик Массачусетского технологического института Макс Тегмарк предлагает разбить теории множественных вселенных на четыре разных типа, чтобы удобно было думать.

Мы сосредоточимся на первом уровне мультивселенных — эти версии проще других понять. На первом уровне у нас также довольно неплохие шансы найти доказательства, которые докажут, что мультивселенная реальна.

Множественные вселенные вытекают из математических прогнозов уже существующих теорий, и мультивселенная первого уровня предсказывается очень уважаемой и весомой идеей в физике: инфляцией.

Что мы подразумеваем под «вселенной»?

Чтобы понять идею множественных вселенных, сначала нужно определить, что мы имеем в виду, когда говорим «вселенная». Наше определение «вселенной» не раз менялось, например, когда мы изобрели первый телескоп, выглянули в космос и узнали, что звезды не крепятся к небу на гвозди, а Земля не одна такая в космосе.

Но Вселенная намного больше, чем мы можем увидеть в телескоп, говорит Джонсон. Наша вселенная представляет лишь сферу света, которому хватило времени, чтобы добраться до нас. Если мы подождем еще миллиард лет, то увидим еще больше и наше понятие вселенной снова перевернется, говорит Тегмарк.

Кто-то, стоящий на планете за триллионы световых лет от нас, будет иметь совершенно другую картину «вселенной», основанную на том, сколько света упало на его планету.

Мы никак не сможем достичь до этих других пузырей вселенных по определению, потому что нет никакого способа двигаться быстрее света. Хотя мы их не видим, физики считают, что следы их рождения все еще могут быть обнаружены.

Где доказательства?

Идея инфляции заключается в том, что во время зарождения наша Вселенная пережила период быстрого расширения (сразу после Большого Взрыва), когда нанометр пространства внезапно взорвался на 250 миллионов световых лет менее чем за одну триллионную секунды.

После начала инфляции она никогда полностью не останавливалась. В некоторых областях пространства-времени она останавливается, в них участки пространства превращаются в пузыри вроде той вселенной, которую мы видим вокруг, но в остальных местах космос продолжает расширяться. Если расширение бесконечно, а многие так и полагают, то новые пузыри вселенных образуются постоянно. Остается такой пузырьковый след. Мы дрейфуем через пространство-время в пенном джакузи вселенных.

Опять же, нет никакого способа связаться с другими этими пузырьковыми вселенными, потому что мы не можем двигаться быстрее света. Но теоретически можем доказать, что они существуют. И вот как.

Когда наша пузырьковая вселенная образовалась впервые, вполне возможно, что она столкнулась с другими пузырьковыми вселенными, которые образуются вокруг нашей. Вряд ли мы до сих пор находимся рядом с ними, поскольку продолжающееся расширение пространства-времени уносит нас все дальше и дальше.

Тем не менее влияние ранних столкновений могло пустить ряби на космическом микроволновом фоне (тепло, оставшееся после Большого Взрыва). Теоретически мы могли бы заметить эту рябь с помощью телескопов. Она была бы обесцвеченным диском — как синяк на теле микроволнового фона.

Джонс занимается поиском таких «синяков», но многое зависит от того, как быстро появились другие пузырьковые вселенные и сколько их вообще может быть. Если пузырьков немного, мы могли вовсе с ними не столкнуться.

Космический телескоп Планк в настоящее время прислушивается к небесам в поисках свидетельства таких столкновений с другими вселенными.

Мультивселенная внутри БАК

Разные физики придерживаются разных теорий мультивселенной. Эта версия возникает из теории струн, а также идеи существования многих других измерений, к которым у нас просто нет доступа (как в ситуации, в которой попал герой Макконахи в фильме «Интерстеллар»). Некоторые физики думают, что параллельные вселенные скрываются в этих дополнительных измерениях.

Такая идея мультивселенной тоже проверяема.

Физики будут искать микроскопические черные дыры на Большом адронном коллайдере, который заработал на днях. На БАКе невозможно произвести черную дыру, которая будет опасна, но, согласно этой теории, вполне можно создать микроскопические черные дыры, которые будут мгновенно испаряться. Наличие черных дыр будет означать, что гравитация нашей Вселенной просачивается в дополнительные измерения.

«Поскольку гравитация может утекать из нашей Вселенной в дополнительные измерения, такую модель можно проверить, обнаружив миниатюрные черные дыры на БАКе, — рассказывал физик Мир Файзаль. — Мы подсчитали энергию, на которой можно обнаружить эти черные дыры в гравитационной радуге. Если мы обнаружим черные дыры на такой энергии, мы будем знать, что как теория гравитационной радуги, так и теория дополнительных измерений — обе верны».

Это было бы убедительным свидетельством для теории струн и параллельных вселенных, а также помогло бы объяснить, почему гравитация намного слабее других фундаментальных сил.

Впрочем, никаких серьезных подтверждений пока нет. Только сомнения.

«Я верю только в то, что подтверждается конкретными, проверяемыми экспериментальными доказательствами, и концепция параллельных вселенных этим точно похвастать не может», — говорит Брайан Грин, физик-теоретик из Колумбийского университета.

Проблема в том, как говорит Джонсон, что физики удаляются от философских обсуждений множественных вселенных. Одни просто хотят проверить идею. Другие придерживаются радикальных и непроверяемых теорий. Тегмарк говорит, что попытается провести эксперимент с квантовым самоубийством, когда будет стар и немощен. Но будем надеяться, он просто шутит.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *